Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38793496

ABSTRACT

This study investigates the surface topography of microfinishing abrasive films and their machining capability on the Nimonic 80A superalloy, a high-performance nickel-based alloy commonly used in aerospace and gas turbine engine applications. Surface analysis was conducted on three abrasive films with nominal grain sizes of 30, 15, and 9 µm, exploring wear patterns, contact frequency, and distribution. To assess the distribution of grain apexes, Voronoi cells were employed. Results revealed distinct wear mechanisms, including torn abrasive grains and cracked bond surfaces, highlighting the importance of efficient chip removal mechanisms in microfinishing processes. Larger grain sizes exhibited fewer contacts with the workpiece but provided more storage space for machining products, while smaller grain sizes facilitated smoother surface finishes. The research demonstrated the effectiveness of microfinishing abrasive films in reducing surface irregularities. Additionally, surface analysis of worn abrasive tools provided insights into wear mechanisms and chip formation, with the segmentation of microchips contributing to efficient chip removal. These findings underscore the significance of selecting appropriate abrasive films and implementing effective chip removal mechanisms to optimize microfinishing processes and improve surface finishing quality in advanced material machining applications. It is worth emphasizing that no prior research has investigated the microfinishing of components crafted from Nimonic 80A utilizing abrasive films, rendering this study truly unique in its contribution to the field.

2.
Materials (Basel) ; 17(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38673152

ABSTRACT

This article presents a comprehensive investigation into pressure rollers utilized in the microfinishing process, covering aspects such as design, experimental properties, compliance, and finite element simulation. Prototype pressure rollers with unconventional elastomer configurations were designed and analyzed to explore their effectiveness in achieving superior surface finishes. Experimental analysis and finite element simulations were conducted to gain insights into the performance and behavior of these pressure rollers under various loading conditions. This study addresses the validation of constitutive material models used in finite element simulations to ensure accuracy and reliability. The results indicate that the applied material model, validated through experimental analysis, accurately predicts pressure roller behavior. Finite element simulations reveal distinct contact zone patterns and stress distributions across the contact surfaces, highlighting the importance of considering deflection-induced variations in contact behavior. Additionally, the investigation evaluates the effectiveness of different pressure rollers in removing surface irregularities during the microfinishing process. Roller R3 demonstrates the highest efficacy in removing surface peaks, suggesting its potential for achieving superior surface finishes. Overall, this research contributes to the advancement of microfinishing techniques by providing insights into pressure roller design, performance, and behavior, thereby optimizing microfinishing processes to produce high-quality components. The urgency of this study arises from the growing need for exceptional surface finishes in various industrial sectors. With manufacturing industries increasingly pursuing high-precision components boasting flawless surface quality, the significance of microfinishing processes is highlighted.

3.
Materials (Basel) ; 17(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38612180

ABSTRACT

Electrical steels are widely used in the electrical industry in the construction of many devices, e.g., power transformer cores and distribution transformers. An important parameter of electrical components that determines the efficiency of devices is energy loss during remagnetization. These losses are influenced, among other factors, by steel cutting processes. The common techniques for cutting electrical materials on industrial lines are mechanical cutting and laser cutting. High-pressure abrasive water jet (AWJ) cutting, unlike the technologies mentioned above, can ensure higher quality of the cut edge and limit the negative impact of the cutting process on the magnetic properties of sheet metal. However, the correct control of the process and the conditions of its implementation comprise a complex issue and require extensive scientific research. This work presents a new approach to cutting electric sheets, involving bundle cutting, which significantly increases the processing efficiency and the dimensional and shape accuracy of the cut details. The tests were carried out for bundles composed of a maximum of 30 sheets, ready to be joined in a stator and rotor in a motor. The influence of processing conditions on the quality of the cut edges of sheet metal, the width of the deformation zone, and the burr height were analyzed. The detailed analysis of the quality of the cut edges of electrical bundled sheets creates new possibilities for controlling the AWJ cutting process in order to obtain a product with the desired functional and operational properties.

4.
Materials (Basel) ; 17(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612217

ABSTRACT

This study introduces innovative designs for abrasive tools aimed at enhancing surface finishing processes. Prototypes consisting of non-continuous abrasive films with discontinuous surface carriers and abrasive layers were developed to improve the efficiency and effectiveness of the smoothing process. Four distinct abrasive films with varying nominal grain sizes were fabricated to explore the versatility and efficacy of the prototypes. The results indicate that the incorporation of carrier irregularities significantly influences surface finishing processes, leading to improvements in material removal efficiency and surface quality. Longitudinal discontinuities facilitate faster removal of irregularities from workpiece materials, reducing the risk of deep scratches on surfaces. Additionally, this study highlights the importance of tool motion patterns in optimizing material removal processes and ensuring surface quality. The integration of carrier irregularities with additional oscillatory tool motion shows promise for further improving surface quality. These findings advance our understanding of abrasive machining processes and provide valuable insights for optimizing abrasive tool designs and machining strategies for enhanced surface finishing.

5.
Materials (Basel) ; 17(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38591435

ABSTRACT

The paper describes selected aspects of the optimization of grinding processes, taking into account the characteristic probabilistic features of this process. Characteristic features of the grinding process that influence the significant dispersion of the quantities used in the optimization process to define goals and limitations are indicated. Attention was paid to the reasons for uncertainty in the use of research results, imperfections in information extraction procedures and the limited amount of data in the use of simulation and regression models in optimization procedures. The issue of determining the durability of abrasive tools in grinding process optimization procedures was analyzed. Methodologies for defining tool life are specified, taking into account the dispersion of the values of controlled process parameters. The effects of interference were taken into account in the relationships describing grinding efficiency and costs. The benefits of optimization taking into account the probabilistic nature of the process were determined.

6.
Materials (Basel) ; 17(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38591557

ABSTRACT

In this study, the surface of new lapping films was analyzed, and the lapping finishing process was applied to RG7 tin bronze alloy. The research focused on examining lapping films with electrocorundum grains of nominal sizes 30, 12, and 9 µm, commonly used for achieving smooth surfaces. The manufacturing process involves placing abrasive grains and binder onto a polyester tape, resulting in a heterogeneous distribution of abrasive grains. The study investigates the impact of this random distribution on the performance of lapping films during material removal. Scanning electron microscopy was used to analyze the surface structure of abrasive films, revealing distinctive structures formed by the specific aggregation of abrasive grains. This study explores the influence of different nominal grain sizes on surface finish and aims to optimize lapping processes for diverse applications. The research also delves into microchip analysis, examining the products of the lapping film finishing process. Microchips were observed directly on the abrasive tool surface, revealing insights into their morphology and distribution. The chip segmentation frequency was determined, and they amounted to approximately 0.8 to 3 MHz; these are very high frequencies, which are unique for known chip-forming processes.

7.
Materials (Basel) ; 16(6)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36984074

ABSTRACT

The paper presents probabilistic aspects of diagnostics of grinding processes with consideration of metrological aspects of evaluation of topography of machined surfaces and selected problems of assessment of machining accuracy. The processes of creating the geometric structure of the ground surface are described. It was pointed out that the distribution of features important for process diagnostics depends on the mechanism of cumulative effects of random disturbances. Usually, there is a multiplicative mechanism or an additive mechanism of the component vectors of relative displacements of the tool and workpiece. The paper describes a method for determining the classification ability of specific parameters used to evaluate stereometric features of ground surfaces. It is shown that the ability to differentiate the geometric structure of a certain set of surfaces using a selected parameter depends on the geometric mean of the differences in normalized and sorted, consecutive values of this parameter. A methodology is presented for evaluating the ability of various parameters to distinguish different geometric structures of surfaces. Further, on the basis of analyses of a number of grinding processes, a methodology was formulated for proceeding leading to a comprehensive evaluation of machining accuracy and forecasting its results. It was taken into account that in forecasting the accuracy of grinding, it is necessary to determine the deviations, arising under the conditions of multiplicative interaction of the effects of various causes of inaccuracy. Examples are given of processes in which, due to the deformation of the technological system, dependent on the position of the zone and machining force, varying temperature fields and tool wear, the distributions of dimensional deviations are not the realization of stationary processes. It was emphasized that on the basis of the characteristics of the dispersion of the deviation value in the sum set of elements, it is not possible to infer its causes. Only the determination of the "instantaneous" values of the deviation dispersion parameters allows a more complete diagnosis of the process.

8.
Materials (Basel) ; 16(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36837125

ABSTRACT

The article presents the technological aspects of the diagnostics of grinding processes. The main features of the grinding process and their importance in diagnostic issues are discussed. Selected issues of research and assessment of the condition of the active surface of grinding wheels are presented. The authors pointed out that the parameters used to assess the topography of the ground surfaces do not have sufficient possibilities to differentiate the surface condition of the grinding wheels. This publication draws attention to the possibility of using new dedicated parameters to assess the properties of the grinding wheel surface. These parameters have a high ability to differentiate changes occurring as a result of the abrasion of grain vertices, their chipping or loading of the grinding wheel surface. The methodology of assessing the processes of abrasive grain wear and changes in the shape and dimensions of the grinding wheel, taking into account the probabilistic features of the grinding process, was formulated. The directions for the development of abrasive tools are presented, pointing to hybrid tools with a multi-phase structure, modified by additions of abrasive aggregates. A new research direction has also been formulated on the use of additive technology to produce specialised abrasive tools, including those with built-in process sensors.

9.
Materials (Basel) ; 17(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38203948

ABSTRACT

Electrical steels are magnetically soft materials and are widely used in the electrical industry for the construction of power transformer cores, distribution transformers, current transformers, and voltage transformers. An important parameter of electrical components, which determines the efficiency of devices, is energy loss during remagnetization. Energy losses are caused by eddy currents, hysteresis, and magnetic delay associated with the low quality of the cut edge after the cutting of steels, and material deformations and excessive stress concentration in the surrounding cutting zones. Common techniques for cutting electrical materials in industrial lines include mechanical cutting and laser cutting. Work has shown that mechanical cutting of electrical steel single layers results in the occurrence of large deformation zones, and in cutting processes with a high-pressure abrasive water jet (AWJ), significant uplifts of material and burrs at the bottom edges of sheets occur. The problem of increasing the cutting quality was solved through selecting the stream parameters for bundle cutting of electrical steels. It has been shown that in the process of cutting electrical sheet bundles, the height of burrs on the cut surface and the zone of plastic deformation are reduced. The work also presents comparison and analysis of characteristic features of the cut edge of electrical sheets obtained through high-pressure abrasive water jet and mechanical cutting processes. The influence of the type and processing parameters on the characteristic features of the material hysteresis loop was determined.

10.
Materials (Basel) ; 15(23)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36499924

ABSTRACT

In this work, the authors analyse the influence of the order and range of sequential movements of a crane's working members on the accuracy of the final cargo positioning. The analysis was conducted on the basis of a specially developed method in which the authors proposed the introduction of a geometrical indicator of positioning the load in the intermediate positions (after completing each movement sequence) and in the target position, depending on the adopted control strategy and the accuracy of kinematic input of the working mechanisms (powered mechanisms). A mathematical model was presented to enable the accuracy of unidirectional positioning of the crane's working members when conducting sequential movements controlled through the rotation of the crane column, inner and outer boom, and retractable stages of the six-section telescopic boom. Sample results of the numerical simulations showing the influence of the assumed kinematic inputs of the crane members on the accuracy of unidirectional angular and linear positioning and, consequently, on the accuracy of the final positioning of the transported cargo, were presented. Moreover, an indicator of the cargo positioning accuracy dependent on the location of an operator or a video camera and the trajectory of the cargo was developed, allowing the formulation of application conclusions.

11.
Materials (Basel) ; 15(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36079304

ABSTRACT

In this article, the methodology of using probabilistic models of the grinding tool wear process is presented. Probabilistic modeling with empirical data allowed determining the values of other important process features. Among them, the distribution of active grains lifetime or distribution of cumulative attritious wear of the grinding grain apex could be distinguished. The results of modeling and wear analysis of grinding wheels as well as experimental results on peripheral grinding with zoned grinding wheels are presented. The analyzed grinding wheels consisted of three layers: two identical external layers with conventional structure and one internal layer containing the addition of abrasive aggregates. The external layers were profiled by chamfering the edges. As a result, their nominal surfaces were conical. The internal layer had a cylindrical shape and was designed for smoothing the surface after machining with external part. The tools were designed to increase the grinding efficiency and hence a good quality of machined surfaces could be acquired. For the experimental tests, the Ti6Al4V titanium alloy was used. It was found that the change in the shape and position of the grinding zone, as a result of volumetric wheel wear, caused a significant change in fracturing intensity. In the case of multilayer grinding tools, the wear process depends on the physical properties of each layer and their participation during machining of the workpiece. The presented methodology could be applied to a study on the machining process stages, which concerns temporary states and their variability according to the machining time.This makes it possible to reduce the cost of developing new tools dedicated to specific applications.

12.
Materials (Basel) ; 15(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36143499

ABSTRACT

The shape of the cutting blades of the abrasive grains has an influence on the material separation process in the machining zone. The paper analyzes the influence of the geometrical parameters of the abrasive grains (rake angle γ, apex angle ε, opening angle α), as well as width bz and length bb of the cutting zone on the material removal efficiency. The material removal efficiency was determined taking into account the volume of the removed material VG and the volume of lateral piles-up VR. The analyses were carried out on the basis of the results of experimental and simulations using the finite element method. The relationship between the selected geometric parameters characterizing the cutting zone and the coefficient characterizing the efficiency of the material removal process was determined. A strong influence of the opening angle α as well as the width bz and length bb of the cutting zone on the material removal process by abrasive grain was demonstrated. It was observed that the wide cutting edge, and thus the large opening angle α of the grain, reduced the size of the pile-ups and more effectively removed the chip material.

13.
Materials (Basel) ; 15(16)2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36013887

ABSTRACT

In this article, a method of grinding small ceramic elements using hyperboloid and conical grinding wheels was presented. The method allowed for machining with a lower material removal speed and extending the grinding zone without reducing the efficiency of the process. In order to assess the process output parameters, numerical simulations were carried out for single-pass machining. This strategy allows for automation of the process. Grinding with a low material removal speed is recommended for the machining of small and thin elements, since this can avoid fracturing the elements. The methodology for selecting process parameters as well as the results of the abrasive grains activity analyses were presented. The analyses also concerned the roughness of machined surfaces and the variability of their textures. This grinding method was applied in the production of small ceramic elements that are used in the construction of electronic systems, and in the processing of small piezoceramic parts. This grinding technique could also be used in other grinding processes, where the removal of small machining allowances with high efficiency is required.

14.
Materials (Basel) ; 14(24)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34947418

ABSTRACT

This paper presents the fundamentals of the design and applications of new worm gear drive solutions, which enable the minimisation of backlash and are characterised by higher kinematic accuracy. Different types of worm surfaces are briefly outlined. Technological problems concerning the principles of achieving a high degree of precision in machining are also described. Special attention is paid to the shaping of conical helical surfaces. Increasing the manufacturing precision of drive components allows one to achieve both lower backlash values and lower levels of its dispersion. However, this does not ensure that backlash can be eliminated, with its value being kept low during longer periods of operation. This is important in positioning systems and during recurrent operations. Various design solutions for drives in which it is possible to reduce backlash are presented. Results of experiments of a worm gear drive with a worm axially adaptive only locally, in its central section, are presented. In this solution, it is possible to reduce backlash by introducing adjustment settings without disassembling the drive. An important scientific problem concerned defining the principles of achieving a compromise between the effectiveness of reducing backlash and the required load capacity of the drive. In this paper it has been shown that in worm gear drives with a locally axially adaptive worm, as well as with a worm wheel with a deformable rim, it is possible to achieve significant reduction of backlash. In high precision drives-for example, those with an average backlash value of <15 micrometers-this can enable more than a two-fold reduction of the average backlash value and more than a three-fold decrease of the standard deviation of local backlash values.

15.
Materials (Basel) ; 14(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34947497

ABSTRACT

The paper describes an automated method for grinding small ceramic elements using a hyperboloid wheel. The problem of automating the process of machining elements made of nonmagnetic materials with a small area and low height has been solved. Automation of the grinding process was possible thanks to automatic clamping of workpieces in the machining zone and sequential processing by a specified number of grinding wheels. The workpieces were passed through successive machining zones. The division of the allowance of individual grinding wheels was made taking into account the characteristics of the workpieces and the requirements for the results of the machining. Obtaining a long grinding zone and the effect of automatic clamping of the workpieces was possible due to the inclination of the grinding wheel axis in relation to the plane of movement of the workpieces. Innovative aggregate grinding wheels were used for grinding. The aggregates containing diamond abrasive grains, connected with a metal bond, were embedded in the porous structure of the resin bond. The aggregates ensured high efficiency of grinding, and their developed surface contributed to good holding in the resin binder. The durability of grinding wheels was 64 h, which enables the machining of 76,000 ceramic elements.

16.
Materials (Basel) ; 14(15)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34361360

ABSTRACT

The dynamic impact of a water jet with a periodically changing structure can be used in various industries. The paper presents a design solution for a self-excited pulse head. This head can be used in mining for drilling holes and breaking rocks. The design of the head was developed based on computer simulations, which made it possible to learn the mechanism of impulse shaping inside the head. Tests of the water jet produced in the self-excited pulsation head showed the occurrence of periodic changes in its internal structure and pulsation frequency. A significant increase in the dynamic stream pressures was demonstrated for the head working in the water environment compared to the head working in the air environment For example, for nominal medium and highest pressures, this increase is up to 82%, while for the lowest pressures (10 MPa), the pressure force values increase by 46%. It was found that an increase in the nominal water pressure causes a decrease in the frequency of hydrodynamic pulses in the head operating in both the water and air environment.

17.
Materials (Basel) ; 14(8)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33921087

ABSTRACT

Surface topography has a profound influence on the function of a surface [...].

18.
Materials (Basel) ; 14(8)2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33921559

ABSTRACT

A simulation model and the results of experimental tests of a vibration generator in applications for the hot-dip galvanizing process are presented. The parameters of the work of the asynchronous motor forcing the system vibrations were determined, as well as the degree of unbalance enabling the vibrations of galvanized elements weighing up to 500 kg to be forced. Simulation and experimental tests of the designed and then constructed vibration generator were carried out at different intensities of the unbalanced rotating mass of the motor. Based on the obtained test results, the generator operating conditions were determined at which the highest values of the amplitude of vibrations transmitted through the suspension system to the galvanized elements were obtained.

19.
Materials (Basel) ; 13(24)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371402

ABSTRACT

Modeling of material displacements in the microcutting zone is complex due to the number and interdependence of factors affecting the results of the process. An important problem in the modeling process is the selection of the constitutive model and its parameters, which will correctly describe the properties of the material under the conditions of triaxial compression, which is characteristic for the areas of the contact zone of the blade and the processed material in abrasive machining processes. The aim of the work was to develop computer models (with the use of the finite element method) of the microcutting process with a single abrasive grain, which were verified with the results of experimental tests. The paper presents the methodology of modeling the processes of microcutting with abrasive grains, whose geometrical models were created based on optical scanning methods. Observations of the microcutting process were carried out with the use of a high-speed camera and an optical profilometer. This enabled a detailed observation of the chip formation process, as well as the analysis of the surface topography of microcutting traces. The results presented in the paper indicate the convergence of the results of the numerical and experimental simulations with regard to the geometric parameters describing the scratches formed in the microcutting process and the compliance of the chip-forming process. Thus, the correctness of the selection of the constitutive model (Johnson Cook equation) and its parameters was demonstrated, as well as the correctness of the applied methodology for creating a geometric model that allowed for a reflection of the geometrical parameters of the abrasive grains that coincided with the real objects, thanks to which it was possible to reflect in detail the phenomena occurring in the vicinity of the abrasive grain tip.

20.
Materials (Basel) ; 13(6)2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32182998

ABSTRACT

The present paper covers the possible ways to fabricate advanced porous coatings that are enriched in copper on a titanium substrate through Direct Current Plasma Electrolytic Oxidation (DC-PEO) with voltage control, in electrolytes made of concentrated orthophosphoric acid with the addition of copper(II) nitrate(V) trihydrate. In these studies, solutions containing from 0 to 650 g salt per 1 dm3 of acid and anodic voltages from 450 V up to 650 V were used. The obtained coatings featuring variable porosity could be best defined by the three-dimensional (3D) parameter Sz, which lies in the range 9.72 to 45.18 µm. The use of copper(II) nitrate(V) trihydrate in the electrolyte, resulted, for all cases, in the incorporation of the two oxidation forms, i.e., Cu+ and Cu2+ into the coatings. Detailed X-Ray Photoelectron Spectroscopy (XPS) studies layers allowed for stating that the percentage of copper in the surface layer of the obtained coatings was in the range of 0.24 at% to 2.59 at%. The X-Ray Diffraction (XRD) studies showed the presence of copper (α-Cu2P2O7, and Cu3(PO4)2) and titanium (TiO2-anatase, TiO3, TiP2O7, and Ti0.73O0.91) compounds in coatings. From Energy-Dispersive X-Ray Spectroscopy (EDS) and XPS studies, it was found that the Cu/P ratio increases with the increase of voltage and the amount of salt in the electrolyte. The depth profile analysis by Glow-Discharge Optical Emission Spectroscopy (GDOES) method showed that a three-layer model consisting of a top porous layer, a semi-porous layer, and a transient/barrier layer might describe the fabricated coatings.

SELECTION OF CITATIONS
SEARCH DETAIL
...