Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Anal Methods Chem ; 2017: 2028417, 2017.
Article in English | MEDLINE | ID: mdl-29181221

ABSTRACT

Monitoring bromides (Br-) is of crucial importance since bromates, potential human carcinogens, are formed during ozonation of water containing bromides in concentrations >100 µg L-1. Within this study, silver (Ag) and four carbon-supported Ag catalysts were synthesized by the γ-radiation method and their morphology and structure examined using transmission electron microscopy, X-ray diffraction, and UV-Vis analysis. The nanocatalysts were tested for Br- sensing in aqueous media using cyclic voltammetry. All five Ag materials exhibited electroactivity for sensing of Br- ions, with pure Ag catalyst giving the best response to Br- ions presence in terms of the lowest limit of detection. Sensing of bromides was also explored in tap water after addition of bromides suggesting that herein prepared catalysts could be used for bromides detection in real samples. Furthermore, sensing of other halogen ions, namely, chlorides and iodides, was examined, and response due to chloride presence was recorded.

2.
Colloids Surf B Biointerfaces ; 105: 230-5, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23376750

ABSTRACT

Silver/poly(N-vinyl-2-pyrrolidone) (Ag/PVP) nanocomposites containing Ag nanoparticles at different concentrations were synthesized using γ-irradiation. Cytotoxicity of the obtained nanocomposites was determined by MTT assay in monolayer cultures of normal human immunocompetent peripheral blood mononuclear cells (PBMC) that were either non-stimulated or stimulated to proliferate by mitogen phytohemagglutinin (PHA), as well as in human cervix adenocarcinoma cell (HeLa) cultures. Silver release kinetics and mechanical properties of nanocomposites were investigated under bioreactor conditions in the simulated body fluid (SBF) at 37°C. The release of silver was monitored under static conditions, and in two types of bioreactors: perfusion bioreactors and a bioreactor with dynamic compression coupled with SBF perfusion simulating in vivo conditions in articular cartilage. Ag/PVP nanocomposites exhibited slight cytotoxic effects against PBMC at the estimated concentration of 0.4 µmol dm(-3), with negligible variations observed amongst different cell cultures investigated. Studies of the silver release kinetics indicated internal diffusion as the rate limiting step, determined by statistically comparable results obtained at all investigated conditions. However, silver release rate was slightly higher in the bioreactor with dynamic compression coupled with SBF perfusion as compared to the other two systems indicating the influence of dynamic compression. Modelling of silver release kinetics revealed potentials for optimization of Ag/PVP nanocomposites for particular applications as wound dressings or soft tissue implants.


Subject(s)
Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Leukocytes, Mononuclear/drug effects , Materials Testing , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Polyvinyls/chemistry , Pyrrolidines/chemistry , Silver/chemistry , Biomimetic Materials/metabolism , Bioreactors , Body Fluids/chemistry , Body Fluids/metabolism , Cell Proliferation/drug effects , Cells, Cultured , HeLa Cells , Humans , Silver/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...