Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Mol Ther Nucleic Acids ; 34: 102066, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38034032

ABSTRACT

The European Cooperation in Science and Technology (COST) is an intergovernmental organization dedicated to funding and coordinating scientific and technological research in Europe, fostering collaboration among researchers and institutions across countries. Recently, COST Action funded the "Genome Editing to treat Human Diseases" (GenE-HumDi) network, uniting various stakeholders such as pharmaceutical companies, academic institutions, regulatory agencies, biotech firms, and patient advocacy groups. GenE-HumDi's primary objective is to expedite the application of genome editing for therapeutic purposes in treating human diseases. To achieve this goal, GenE-HumDi is organized in several working groups, each focusing on specific aspects. These groups aim to enhance genome editing technologies, assess delivery systems, address safety concerns, promote clinical translation, and develop regulatory guidelines. The network seeks to establish standard procedures and guidelines for these areas to standardize scientific practices and facilitate knowledge sharing. Furthermore, GenE-HumDi aims to communicate its findings to the public in accessible yet rigorous language, emphasizing genome editing's potential to revolutionize the treatment of many human diseases. The inaugural GenE-HumDi meeting, held in Granada, Spain, in March 2023, featured presentations from experts in the field, discussing recent breakthroughs in delivery methods, safety measures, clinical translation, and regulatory aspects related to gene editing.

2.
Int J Mol Sci ; 23(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35408953

ABSTRACT

Melanoma-initiating cells (MICs) contribute to the tumorigenicity and heterogeneity of melanoma. MICs are identified by surface and functional markers and have been shown to display cancer stem cell (CSC) properties. However, the existence of MICs that follow the hierarchical CSC model has been questioned by studies showing that single unselected melanoma cells are highly tumorigenic in xenotransplantation assays. Herein, we characterize cells expressing MIC markers (CD20, CD24, CD133, Sca-1, ABCB1, ABCB5, ALDHhigh) in the B16-F10 murine melanoma cell line. We use flow cytometric phenotyping, single-cell sorting followed by in vitro clonogenic assays, and syngeneic in vivo serial transplantation assays to demonstrate that the expression of MIC markers does not select CSC-like cells in this cell line. Previously, our group showed that heme-degrading enzyme heme oxygenase-1 (HO-1) can be upregulated in melanoma and increase its aggressiveness. Here, we show that HO-1 activity is important for non-adherent growth of melanoma and HO-1 overexpression enhances the vasculogenic mimicry potential, which can be considered protumorigenic activity. However, HO-1 overexpression decreases clone formation in vitro and serial tumor initiation in vivo. Thus, HO-1 plays a dual role in melanoma, improving the progression of growing tumors but reducing the risk of melanoma initiation.


Subject(s)
Heme Oxygenase-1 , Melanoma, Experimental , Animals , Cell Line, Tumor , Cell Separation , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Melanoma, Experimental/pathology , Membrane Proteins , Mice , Neoplastic Stem Cells/metabolism
3.
Int J Mol Sci ; 22(14)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34299172

ABSTRACT

Maturity-onset diabetes of the young (MODY) is a genetically heterogeneous group of monogenic endocrine disorders that is characterised by autosomal dominant inheritance and pancreatic ß-cell dysfunction. These patients are commonly misdiagnosed with type 1 or type 2 diabetes, as the clinical symptoms largely overlap. Even though several biomarkers have been tested none of which could be used as single clinical discriminator. The correct diagnosis for individuals with MODY is of utmost importance, as the applied treatment depends on the gene mutation or is subtype-specific. Moreover, in patients with HNF1A-MODY, additional clinical monitoring can be included due to the high incidence of vascular complications observed in these patients. Finally, stratification of MODY patients will enable better and newer treatment options for MODY patients, once the disease pathology for each patient group is better understood. In the current review the clinical characteristics and the known disease-related abnormalities of the most common MODY subtypes are discussed, together with the up-to-date applied diagnostic criteria and treatment options. Additionally, the usage of pluripotent stem cells together with CRISPR/Cas9 gene editing for disease modelling with the possibility to reveal new pathophysiological mechanisms in MODY is discussed.


Subject(s)
Diabetes Complications/prevention & control , Diabetes Mellitus, Type 2/pathology , Gene Editing , Models, Biological , Animals , Diabetes Complications/etiology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/therapy , Humans
4.
Skelet Muscle ; 10(1): 35, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33287890

ABSTRACT

The nuclear factor erythroid 2-related factor 2 (Nrf2) is considered as a master cytoprotective factor regulating the expression of genes encoding anti-oxidant, anti-inflammatory, and detoxifying proteins. The role of Nrf2 in the pathophysiology of skeletal muscles has been evaluated in different experimental models, however, due to inconsistent data, we aimed to investigate how Nrf2 transcriptional deficiency (Nrf2tKO) affects muscle functions both in an acute and chronic injury. The acute muscle damage was induced in mice of two genotypes-WT and Nrf2tKO mice by cardiotoxin (CTX) injection. To investigate the role of Nrf2 in chronic muscle pathology, mdx mice that share genetic, biochemical, and histopathological features with Duchenne muscular dystrophy (DMD) were crossed with mice lacking transcriptionally active Nrf2 and double knockouts (mdx/Nrf2tKO) were generated. To worsen the dystrophic phenotype, the analysis of disease pathology was also performed in aggravated conditions, by applying a long-term treadmill test. We have observed slightly increased muscle damage in Nrf2tKO mice after CTX injection. Nevertheless, transcriptional ablation of Nrf2 in mdx mice did not significantly aggravate the most deleterious, pathological hallmarks of DMD related to degeneration, inflammation, fibrotic scar formation, angiogenesis, and the number and proliferation of satellite cells in non-exercised conditions. On the other hand, upon chronic exercises, the degeneration and inflammatory infiltration of the gastrocnemius muscle, but not the diaphragm, turned to be increased in Nrf2tKOmdx in comparison to mdx mice. In conclusion, the lack of transcriptionally active Nrf2 influences moderately muscle pathology in acute CTX-induced muscle injury and chronic DMD mouse model, without affecting muscle functionality. Hence, in general, we demonstrated that the deficiency of Nrf2 transcriptional activity has no profound impact on muscle pathology in various models of muscle injury.


Subject(s)
Muscular Dystrophies/metabolism , NF-E2-Related Factor 2/metabolism , Animals , Cardiotoxins/toxicity , Dystrophin/genetics , Female , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Dystrophies/etiology , Muscular Dystrophies/genetics , NF-E2-Related Factor 2/genetics , Running
5.
Biomedicines ; 8(12)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297443

ABSTRACT

Cell therapies are extensively tested to restore heart function after myocardial infarction (MI). Survival of any cell type after intracardiac administration, however, may be limited due to unfavorable conditions of damaged tissue. Therefore, the aim of this study was to evaluate the therapeutic effect of adipose-derived stromal cells (ADSCs) and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) overexpressing either the proangiogenic SDF-1α or anti-inflammatory heme oxygenase-1 (HO-1) in a murine model of MI. ADSCs and hiPSCs were transduced with lentiviral vectors encoding luciferase (Luc), GFP and either HO-1 or SDF-1α. hiPSCs were then differentiated to hiPSC-CMs using small molecules modulating the WNT pathway. Genetically modified ADSCs were firstly administered via intracardiac injection after MI induction in Nude mice. Next, ADSCs-Luc-GFP and genetically modified hiPSC-CMs were injected into the hearts of the more receptive NOD/SCID strain to compare the therapeutic effect of both cell types. Ultrasonography, performed on days 7, 14, 28 and 42, revealed a significant decrease of left ventricular ejection fraction (LVEF) in all MI-induced groups. No improvement of LVEF was observed in ADSC-treated Nude and NOD/SCID mice. In contrast, administration of hiPSC-CMs resulted in a substantial increase of LVEF, occurring between 28 and 42 days after MI, and decreased fibrosis, regardless of genetic modification. Importantly, bioluminescence analysis, as well as immunofluorescent staining, confirmed the presence of hiPSC-CMs in murine tissue. Interestingly, the luminescence signal was strongest in hearts treated with hiPSC-CMs overexpressing HO-1. Performed experiments demonstrate that hiPSC-CMs, unlike ADSCs, are effective in improving heart function after MI. Additionally, long-term evaluation of heart function seems to be crucial for proper assessment of the effect of cell administration.

6.
Biomolecules ; 10(12)2020 11 29.
Article in English | MEDLINE | ID: mdl-33260307

ABSTRACT

Inadequate supply of oxygen (O2) is a hallmark of many diseases, in particular those related to the cardiovascular system. On the other hand, tissue hypoxia is an important factor regulating (normal) embryogenesis and differentiation of stem cells at the early stages of embryonic development. In culture, hypoxic conditions may facilitate the derivation of embryonic stem cells (ESCs) and the generation of induced pluripotent stem cells (iPSCs), which may serve as a valuable tool for disease modeling. Endothelial cells (ECs), multifunctional components of vascular structures, may be obtained from iPSCs and subsequently used in various (hypoxia-related) disease models to investigate vascular dysfunctions. Although iPSC-ECs demonstrated functionality in vitro and in vivo, ongoing studies are conducted to increase the efficiency of differentiation and to establish the most productive protocols for the application of patient-derived cells in clinics. In this review, we highlight recent discoveries on the role of hypoxia in the derivation of ESCs and the generation of iPSCs. We also summarize the existing protocols of hypoxia-driven differentiation of iPSCs toward ECs and discuss their possible applications in disease modeling and treatment of hypoxia-related disorders.


Subject(s)
Cell Hypoxia , Endothelial Cells/cytology , Pluripotent Stem Cells/cytology , Cell Differentiation , Humans , Oxygen/metabolism
7.
Biochem Pharmacol ; 175: 113922, 2020 05.
Article in English | MEDLINE | ID: mdl-32205093

ABSTRACT

Tumor hypoxia and high activity of hypoxia-inducible factor-1 (HIF-1) correlate with adverse disease outcomes, malignancy, resistance to therapy and metastasis. Nonetheless, recent studies indicate that under certain circumstances, HIF-1 stabilization may exert protective effects and even decrease tumor cell aggressiveness. This study aimed to characterize the potential anticancer effect of molidustat (BAY 85-3934), the prolyl hydroxylase (PHD) inhibitor and HIF-1 stabilizator. We confirmed that molidustat stabilizes HIF-1α and induces the expression of vascular endothelial growth factor (VEGF) in MDA-MB-231 breast cancer cells, to a similar or even greater extent than hypoxia. Interestingly, decreased cell survival and colony formation capabilities, together with S/G2 cell cycle arrest, were observed after treatment with PHD inhibitor. Importantly, molidustat enhanced the effectiveness of the chemotherapeutic drug, gemcitabine, on cancer cells. Finally, the xenograft model revealed decreased tumor growth in vivo after molidustat treatment. Both in vitro and in vivo analysis showed no differences in the angiogenic potential of endothelial cells treated with tumor-conditioned media or vascularization of the MDA-MB-231 xenografts, respectively. In summary, molidustat treatment exhibits an inhibitory effect on breast cancer cell survival, self-renewal capacity and potentiates the efficacy of chemotherapeutic gemcitabine.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Pyrazoles/pharmacology , Triazoles/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Cell Line, Tumor , Dose-Response Relationship, Drug , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Protein Stability/drug effects , Pyrazoles/therapeutic use , Random Allocation , Triazoles/therapeutic use , Xenograft Model Antitumor Assays/methods
8.
Cancers (Basel) ; 12(3)2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32138178

ABSTRACT

Burkitt lymphoma (BL) is a rapidly growing tumor, characterized by high anabolic requirements. The MYC oncogene plays a central role in the pathogenesis of this malignancy, controlling genes involved in apoptosis, proliferation, and cellular metabolism. Serine biosynthesis pathway (SBP) couples glycolysis to folate and methionine cycles, supporting biosynthesis of certain amino acids, nucleotides, glutathione, and a methyl group donor, S-adenosylmethionine (SAM). We report that BLs overexpress SBP enzymes, phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase 1 (PSAT1). Both genes are controlled by the MYC-dependent ATF4 transcription factor. Genetic ablation of PHGDH/PSAT1 or chemical PHGDH inhibition with NCT-503 decreased BL cell lines proliferation and clonogenicity. NCT-503 reduced glutathione level, increased reactive oxygen species abundance, and induced apoptosis. Consistent with the role of SAM as a methyl donor, NCT-503 decreased DNA and histone methylation, and led to the re-expression of ID4, KLF4, CDKN2B and TXNIP tumor suppressors. High H3K27me3 level is known to repress the MYC negative regulator miR-494. NCT-503 decreased H3K27me3 abundance, increased the miR-494 level, and reduced the expression of MYC and MYC-dependent histone methyltransferase, EZH2. Surprisingly, chemical/genetic disruption of SBP did not delay BL and breast cancer xenografts growth, suggesting the existence of mechanisms compensating the PHGDH/PSAT1 absence in vivo.

9.
Int J Cancer ; 147(4): 1117-1130, 2020 08 15.
Article in English | MEDLINE | ID: mdl-31863596

ABSTRACT

Targeting of the TRAIL-DR4/5 pathway was proposed as a promising approach for specific induction of apoptosis in cancer cells. Clinical trials, however, showed inadequate efficiency of TRAIL as a monotherapy. It is a widely held view that the application of multifunctional molecules or combination therapy may lead to substantial improvement. Here, we demonstrate the effectiveness and safety of a novel chimeric protein, AD-O51.4, which is a TRAIL equipped with positively charged VEGFA-derived effector peptides. The study was performed in multiple cancer cell line- and patient-derived xenografts. A pharmacokinetic profile was established in monkeys. AD-O51.4 strongly inhibits tumor growth, even leading to complete long-term tumor remission. Neither mice nor monkeys treated with AD-O51.4 demonstrate symptoms of drug toxicity. AD-O51.4 exhibits a satisfactory half-life in plasma and accumulates preferentially in tumors. The cellular mechanism of AD-O51.4 activity involves both cytotoxic effects in tumor cells and antiangiogenic effects on the endothelium. The presence of DRs in cancer cells is crucial for AD-O51.4-driven apoptosis execution. The TRAIL component of the fusion molecule serves as an apoptosis inducer and a cellular anchor for the effector peptides in TRAIL-sensitive and TRAIL-resistant cancer cells, respectively. The FADD-dependent pathway, however, seems to be not indispensable in death signal transduction; thus, AD-O51.4 is capable of bypassing the refractoriness of TRAIL. AD-O51.4-driven cell death, which exceeds TRAIL activity, is achieved due to the N-terminally fused polypeptide, containing VEGFA-derived effector peptides. The high anticancer efficiency of AD-O51.4 combined with its safety has led to the entry of AD-O51.4 into toxicological studies.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Neoplasms/drug therapy , Recombinant Fusion Proteins/pharmacology , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Xenograft Model Antitumor Assays/methods , A549 Cells , Animals , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Female , HCT116 Cells , HT29 Cells , Hep G2 Cells , Humans , Mice, SCID , Neoplasms/pathology , Protein Engineering/methods , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , Tumor Burden/drug effects
10.
EMBO Rep ; 21(2): e47895, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31885181

ABSTRACT

While intrinsic changes in aging hematopoietic stem cells (HSCs) are well characterized, it remains unclear how extrinsic factors affect HSC aging. Here, we demonstrate that cells in the niche-endothelial cells (ECs) and CXCL12-abundant reticular cells (CARs)-highly express the heme-degrading enzyme, heme oxygenase 1 (HO-1), but then decrease its expression with age. HO-1-deficient animals (HO-1-/- ) have altered numbers of ECs and CARs that produce less hematopoietic factors. HSCs co-cultured in vitro with HO-1-/- mesenchymal stromal cells expand, but have altered kinetic of growth and differentiation of derived colonies. HSCs from young HO-1-/- animals have reduced quiescence and regenerative potential. Young HO-1-/- HSCs exhibit features of premature exhaustion on the transcriptional and functional level. HO-1+/+ HSCs transplanted into HO-1-/- recipients exhaust their regenerative potential early and do not reconstitute secondary recipients. In turn, transplantation of HO-1-/- HSCs to the HO-1+/+ recipients recovers the regenerative potential of HO-1-/- HSCs and reverses their transcriptional alterations. Thus, HSC-extrinsic activity of HO-1 prevents HSCs from premature exhaustion and may restore the function of aged HSCs.


Subject(s)
Heme Oxygenase-1 , Mesenchymal Stem Cells , Animals , Cell Differentiation , Endothelial Cells , Hematopoietic Stem Cells , Heme Oxygenase-1/genetics
11.
EMBO Mol Med ; 11(12): e09571, 2019 12.
Article in English | MEDLINE | ID: mdl-31709729

ABSTRACT

Granulocyte colony-stimulating factor (G-CSF) is used in clinical practice to mobilize cells from the bone marrow to the blood; however, it is not always effective. We show that cobalt protoporphyrin IX (CoPP) increases plasma concentrations of G-CSF, IL-6, and MCP-1 in mice, triggering the mobilization of granulocytes and hematopoietic stem and progenitor cells (HSPC). Compared with recombinant G-CSF, CoPP mobilizes higher number of HSPC and mature granulocytes. In contrast to G-CSF, CoPP does not increase the number of circulating T cells. Transplantation of CoPP-mobilized peripheral blood mononuclear cells (PBMC) results in higher chimerism and faster hematopoietic reconstitution than transplantation of PBMC mobilized by G-CSF. Although CoPP is used to activate Nrf2/HO-1 axis, the observed effects are Nrf2/HO-1 independent. Concluding, CoPP increases expression of mobilization-related cytokines and has superior mobilizing efficiency compared with recombinant G-CSF. This observation could lead to the development of new strategies for the treatment of neutropenia and HSPC transplantation.


Subject(s)
Granulocyte Colony-Stimulating Factor/metabolism , Granulocytes/drug effects , Hematopoietic Stem Cells/drug effects , Heme Oxygenase-1/deficiency , Protoporphyrins/pharmacology , Animals , Female , Hematopoietic Stem Cell Mobilization , Heme Oxygenase-1/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
12.
Cells ; 8(11)2019 11 14.
Article in English | MEDLINE | ID: mdl-31739614

ABSTRACT

Patients with HNF1A-maturity-onset diabetes of the young (MODY) often develop endothelial dysfunction and related microvascular complications, like retinopathy. As the clinical phenotype of HNF1A-MODY diabetes varies considerably, we used human induced pluripotent stem cells (hiPSCs) from two healthy individuals (control) to generate isogenic lines with mutation in HNF1A gene. Subsequently, control hiPSCs and their respective HNF1A clones were differentiated toward endothelial cells (hiPSC-ECs) and different markers/functions were compared. Human iPSC-ECs from all cell lines showed similar expression of CD31 and Tie-2. VE-cadherin expression was lower in HNF1A-mutated isogenic lines, but only in clones derived from one control hiPSCs. In the other isogenic set and cells derived from HNF1A-MODY patients, no difference in VE-cadherin expression was observed, suggesting the impact of the genetic background on this endothelial marker. All tested hiPSC-ECs showed an expected angiogenic response regardless of the mutation introduced. Isogenic hiPSC-ECs responded similarly to stimulation with pro-inflammatory cytokine TNF- with the increase in ICAM-1 and permeability, however, HNF1A mutated hiPSC-ECs showed higher permeability in comparison to the control cells. Summarizing, both mono- and biallelic mutations of HNF1A in hiPSC-ECs lead to increased permeability in response to TNF- in normal glycemic conditions, which may have relevance to HNF1A-MODY microvascular complications.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Endothelial Cells/cytology , Hepatocyte Nuclear Factor 1-alpha/genetics , Induced Pluripotent Stem Cells/cytology , Mutation , Biomarkers/metabolism , Cell Differentiation , Cells, Cultured , Diabetes Mellitus, Type 2/metabolism , Endothelial Cells/chemistry , Humans , Induced Pluripotent Stem Cells/metabolism , Models, Biological , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Receptor, TIE-2/metabolism , Tumor Necrosis Factor-alpha/pharmacology
13.
Mediators Inflamm ; 2019: 1868170, 2019.
Article in English | MEDLINE | ID: mdl-31396016

ABSTRACT

Myeloid angiogenic cells (MAC) derive from hematopoietic stem/progenitor cells (HSPCs) that are mobilized from the bone marrow. They home to sites of neovascularization and contribute to angiogenesis by production of paracrine factors. The number and function of proangiogenic cells are impaired in patients with diabetes or cardiovascular diseases. Both conditions can be accompanied by decreased levels of heme oxygenase-1 (HMOX1), cytoprotective, heme-degrading enzyme. Our study is aimed at investigating whether precursors of myeloid angiogenic cells (PACs) treated with known pharmaceuticals would produce media with better proangiogenic activity in vitro and if such media can be used to stimulate blood vessel growth in vivo. We used G-CSF-mobilized CD34+ HSPCs, FACS-sorted from healthy donor peripheral blood mononuclear cells (PBMCs). Sorted cells were predominantly CD133+. CD34+ cells after six days in culture were stimulated with atorvastatin (AT), acetylsalicylic acid (ASA), sulforaphane (SR), resveratrol (RV), or metformin (Met) for 48 h. Conditioned media from such cells were then used to stimulate human aortic endothelial cells (HAoECs) to enhance tube-like structure formation in a Matrigel assay. The only stimulant that enhanced PAC paracrine angiogenic activity was atorvastatin, which also had ability to stabilize endothelial tubes in vitro. On the other hand, the only one that induced heme oxygenase-1 expression was sulforaphane, a known activator of a HMOX1 inducer-NRF2. None of the stimulants changed significantly the levels of 30 cytokines and growth factors tested with the multiplex test. Then, we used atorvastatin-stimulated cells or conditioned media from them in the Matrigel plug in vivo angiogenic assay. Neither AT alone in control media nor conditioned media nor AT-stimulated cells affected numbers of endothelial cells in the plug or plug's vascularization. Concluding, high concentrations of atorvastatin stabilize tubes and enhance the paracrine angiogenic activity of human PAC cells in vitro. However, the effect was not observed in vivo. Therefore, the use of conditioned media from atorvastatin-treated PAC is not a promising therapeutic strategy to enhance angiogenesis.


Subject(s)
Atorvastatin/pharmacology , Culture Media, Conditioned/pharmacology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , AC133 Antigen/metabolism , Antigens, CD34/metabolism , Aspirin/pharmacology , Cells, Cultured , Heme Oxygenase-1/metabolism , Humans , Immunoassay , Isothiocyanates/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Metformin/pharmacology , Neovascularization, Physiologic/drug effects , Phenotype , Resveratrol/pharmacology , Sulfoxides
14.
Arch Biochem Biophys ; 671: 130-142, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31276659

ABSTRACT

Heme oxygenase-1 (HO-1, HMOX1) degrades pro-oxidant heme into carbon monoxide (CO), ferrous ions (Fe2+) and biliverdin. The enzyme exerts multiple cytoprotective functions associated with the promotion of angiogenesis and counteraction of the detrimental effects of cellular stress which are crucial for the survival of both normal and tumor cells. Accordingly, in many tumor types, high expression of HO-1 correlates with poor prognosis and resistance to treatment, i.e. chemotherapy, suggesting inhibition of HO-1 as a possible antitumor approach. At the same time, the lack of selective and well-profiled inhibitors of HO-1 determines the unmet need for new modulators of this enzyme, with the potential to be used in either adjuvant therapy or as the stand-alone targeted therapeutics. In the current study, we provided novel inhibitors of HO-1 and validated the effect of pharmacological inhibition of HO activity by the imidazole-based inhibitor (SLV-11199) in human pancreatic (PANC-1) and prostate (DU-145) cancer cell lines. We demonstrated potent inhibition of HO activity in vitro and showed associated anticancer effectiveness of SLV-11199. Treatment with the tested compound led to decreased cancer cell viability and clonogenic potential. It has also sensitized the cancer cells to chemotherapy. In PANC-1 cells, diminished HO activity resulted in down-regulation of pro-angiogenic factors like IL-8. Mechanistic investigations revealed that the treatment with SLV-11199 decreased cell migration and inhibited MMP-1 and MMP-9 expression. Moreover, it affected mesenchymal phenotype by regulating key modulators of the epithelial to mesenchymal transition (EMT) signalling axis. Finally, F-actin cytoskeleton and focal contacts were destabilized by the reported compound. Overall, the current study suggests a possible relevance of the tested novel inhibitor of HO activity as a potential anticancer compound. To support such utility, further investigation is still needed, especially in in vivo conditions.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Heme Oxygenase (Decyclizing)/antagonists & inhibitors , Heme Oxygenase-1/antagonists & inhibitors , Imidazoles/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Epithelial-Mesenchymal Transition/drug effects , Humans
15.
Oxid Med Cell Longev ; 2018: 3845027, 2018.
Article in English | MEDLINE | ID: mdl-30327713

ABSTRACT

Heme oxygenase 1 (Hmox1), a ubiquitous enzyme degrading heme to carbon monoxide, iron, and biliverdin, is one of the cytoprotective enzymes induced in response to a variety of stimuli, including cellular oxidative stress. Gangliosides, sialic acid-containing glycosphingolipids expressed in all cells, are involved in cell recognition, signalling, and membrane stabilization. Their expression is often altered under many pathological and physiological conditions including cell death, proliferation, and differentiation. The aim of this study was to assess the possible role of Hmox1 in ganglioside metabolism in relation to oxidative stress. The content of liver and brain gangliosides, their cellular distribution, and mRNA as well as protein expression of key glycosyltransferases were determined in Hmox1 knockout mice as well as their wild-type littermates. To elucidate the possible underlying mechanisms between Hmox1 and ganglioside metabolism, hepatoblastoma HepG2 and neuroblastoma SH-SY5Y cell lines were used for in vitro experiments. Mice lacking Hmox1 exhibited a significant increase in concentrations of liver and brain gangliosides and in mRNA expression of the key enzymes of ganglioside metabolism. A marked shift of GM1 ganglioside from the subsinusoidal part of the intracellular compartment into sinusoidal membranes of hepatocytes was shown in Hmox1 knockout mice. Induction of oxidative stress by chenodeoxycholic acid in vitro resulted in a significant increase in GM3, GM2, and GD1a gangliosides in SH-SY5Y cells and GM3 and GM2 in the HepG2 cell line. These changes were abolished with administration of bilirubin, a potent antioxidant agent. These observations were closely related to oxidative stress-mediated changes in sialyltransferase expression regulated at least partially through the protein kinase C pathway. We conclude that oxidative stress is an important factor modulating synthesis and distribution of gangliosides in vivo and in vitro which might affect ganglioside signalling in higher organisms.


Subject(s)
Brain/metabolism , Gangliosides/metabolism , Heme Oxygenase-1/metabolism , Liver/metabolism , Oxidative Stress/physiology , Animals , Cell Line, Tumor , Humans , Mice , Mice, Knockout , Signal Transduction/physiology
16.
J Autoimmun ; 94: 56-69, 2018 11.
Article in English | MEDLINE | ID: mdl-30049532

ABSTRACT

BACKGROUND: Sarcoidosis is characterized by exaggerated immune response to unknown agent and can affect different organs. One of the main players in the pathology of the disease are regulatory T cells (Tregs), however, up to date the mechanisms of the possible molecular alterations of this particular cell subset are not known. METHODS: In the current study we looked for the global transcriptomic changes of miRNAs, using predefined array, and mRNAs (RNA seq analysis) of Tregs of patients with the most predominant form of the disease - acute pulmonary sarcoidosis (PS). For this purpose sorted CD4+/CD25+/CD127- Tregs from peripheral blood (PB) and CD4+/CD25 + Tregs from bronchoalveolar lavage (BAL) were used. RESULTS: MiRNA analysis revealed that Tregs isolated from PB and BAL display significantly different miRNA profile, suggesting an important role of the pulmonary microenvironment in creating these changes. Among disease-related miRNAs of PB Tregs we identified miR-155 and miR-223. Moreover, looking at the global transcriptome of PB Tregs, we recognized alterations in TLR-2 signaling pathway and in the downstream of NF-κB apoptosis and proliferation signals. However, induction of TLR-2 expression was found not only in Tregs, but also in the heterogeneous population of peripheral blood mononuclear cells (PBMC) as well as two PBMC subpopulations (CD4+/CD25-and CD4-/CD25-) of patients with PS. This indicates that activation of TLR signaling pathway in sarcoidosis does not occur only in Tregs. CONCLUSION: Our findings offer a deeper insight into the molecular mechanisms of Tregs reduced suppression and increased apoptosis in patients with PS. Based on the current results, future studies should focus on possible therapeutic effect of TLR-2 signaling inhibition.


Subject(s)
MicroRNAs/genetics , Sarcoidosis, Pulmonary/genetics , T-Lymphocytes, Regulatory/immunology , Toll-Like Receptor 2/genetics , Acute Disease , Adult , Aged , Antigens, CD/genetics , Antigens, CD/immunology , Apoptosis , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Case-Control Studies , Cell Proliferation , Gene Expression Profiling , Gene Expression Regulation , Humans , Immunophenotyping , Lung/immunology , Lung/pathology , Male , MicroRNAs/immunology , Middle Aged , NF-kappa B/genetics , NF-kappa B/immunology , Prospective Studies , Sarcoidosis, Pulmonary/immunology , Sarcoidosis, Pulmonary/pathology , Signal Transduction , T-Lymphocytes, Regulatory/classification , T-Lymphocytes, Regulatory/pathology , Toll-Like Receptor 2/immunology
17.
Acta Biochim Pol ; 65(2): 277-286, 2018.
Article in English | MEDLINE | ID: mdl-29694447

ABSTRACT

Inhibition of heme oxygenase-1 (HO-1, encoded by HMOX1), a cytoprotective, anti-apoptotic and anti-inflammatory enzyme, may serve as a valuable therapy in various pathophysiological processes, including tumorigenesis. We compared the effect of chemical inhibitors - metalloporphyrins, with genetic tools - shRNA and CRISPR/Cas9 systems, to knock-down (KD)/knock-out (KO) HO-1 expression/activity. 293T cells were incubated with metalloporphyrins, tin and zinc protoporphyrins (SnPPIX and ZnPPIX, respectively) or were either transduced with lentiviral vectors encoding different shRNA sequences against HO-1 or were modified by CRISPR/Cas9 system targeting HMOX1. Metalloporphyrins decreased HO activity but concomitantly strongly induced HO-1 mRNA and protein in 293T cells. On the other hand, only slight basal HO-1 inhibition in shRNA KD 293T cell lines was confirmed on mRNA and protein level with no significant effect on enzyme activity. Nevertheless, silencing effect was much stronger when CRISPR/Cas9-mediated knock-out was performed. Most of the clones harboring mutations within HMOX1 locus did not express HO-1 protein and failed to increase bilirubin concentration after hemin stimulation. Furthermore, CRISPR/Cas9-mediated HO-1 depletion decreased 293T viability, growth, clonogenic potential and increased sensitivity to H2O2 treatment. In summary, we have shown that not all technologies can be used for inhibition of HO activity in vitro with the same efficiency. In our hands, the most potent and comprehensible results can be obtained using genetic tools, especially CRISPR/Cas9 approach.


Subject(s)
CRISPR-Cas Systems , Heme Oxygenase-1/antagonists & inhibitors , CRISPR-Cas Systems/genetics , Enzyme Inhibitors , Gene Silencing , Genetic Techniques/standards , HEK293 Cells , Humans , Metalloporphyrins/pharmacology , Methods , RNA, Small Interfering
18.
IUBMB Life ; 70(2): 129-142, 2018 02.
Article in English | MEDLINE | ID: mdl-29316264

ABSTRACT

Cellular stress can influence efficiency of iPSCs generation and their differentiation. However, the role of intracellular cytoprotective factors in these processes is still not well known. Therefore, we investigated the effect of HO-1 (Hmox1) or Nrf2 (Nfe2l2), two major cytoprotective genes. Hmox1-/- fibroblasts demonstrated decreased reprogramming efficiency in comparison to Hmox1+/+ cells. Reversely, pharmacological enhancement of HO-1 resulted in higher number of iPSCs colonies. Importantly, elevated level of both p53 and p53-regulated miR-34a and 14-3-3σ was observed in HO-1-deficient fibroblasts whereas downregulation of p53 in these cells markedly increased their reprogramming efficiency. In human fibroblasts HO-1 silencing also induced p53 expression and affected reprogramming outcome. Hmox1+/+ and Hmox1-/- iPSCs similarly differentiated in vitro to cells originating from three germ layers, however, lower number of contracting cells was observed during this process in HO-1-deficient cells indicating attenuated cardiac differentiation. Importantly, silencing of Hmox1 in murine ESC using CRISPR/Cas-9 editing also impaired their spontaneous cardiac differentiation. Decreased reprogramming efficiency was also observed in Nrf2-lacking fibroblasts. Reversely, sulforaphane, a Nrf2 activator, increased the number of iPSCs colonies. However, both Nfe2l2+/+ and Nfe2l2-/- iPSCs showed similar pluripotency and differentiation capacity. These results indicate that regulation of HO-1 expression can further optimize generation and cardiac differentiation of iPSCs. © 2018 IUBMB Life, 70(2):129-142, 2018.


Subject(s)
Cell Differentiation/physiology , Cellular Reprogramming Techniques/methods , Heme Oxygenase-1/metabolism , Induced Pluripotent Stem Cells/cytology , Membrane Proteins/metabolism , Animals , Cell Cycle/physiology , Fibroblasts , Heme Oxygenase-1/genetics , Humans , Induced Pluripotent Stem Cells/physiology , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
19.
Antioxid Redox Signal ; 29(2): 111-127, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29065700

ABSTRACT

AIMS: Mesenchymal stromal cells (MSCs) are heterogeneous cells from adult tissues that are able to differentiate in vitro into adipocytes, osteoblasts, or chondrocytes. Such cells are widely studied in regenerative medicine. However, the success of cellular therapy depends on the cell survival. Heme oxygenase-1 (HO-1, encoded by the Hmox1 gene), an enzyme converting heme to biliverdin, carbon monoxide, and Fe2+, is cytoprotective and can affect stem cell performance. Therefore, our study aimed at assessing whether Hmox1 is critical for survival and functions of murine bone marrow MSCs. RESULTS: Both MSC Hmox1+/+ and Hmox1-/- showed similar phenotype, differentiation capacities, and production of cytokines or growth factors. Hmox1+/+ and Hmox1-/- cells showed similar survival in response to 50 µmol/L hemin even in increased glucose concentration, conditions that were unfavorable for Hmox1-/- bone marrow-derived proangiogenic cells (BDMC). Hmox1+/+ MSCs but not fibroblasts retained low ROS levels even after prolonged incubation with 50 µmol/L hemin, although both cell types have a comparable Hmox1 expression and similarly increase its levels in response to hemin. MSCs Hmox1-/- treated with hemin efficiently induced expression of a vast panel of antioxidant genes, especially enzymes of the glutathione pathway. Innovation and Conclusion: Hmox1 overexpression is a popular strategy to enhance viability and performance of MSCs after the transplantation. However, murine MSCs Hmox1-/- do not differ from wild-type MSCs in phenotype and functions. MSC Hmox1-/- show better resistance to hemin than fibroblasts and BDMCs and rapidly react to the stress by upregulation of quintessential genes in antioxidant response. Antioxid. Redox Signal. 00, 000-000.


Subject(s)
Heme Oxygenase-1/genetics , Membrane Proteins/genetics , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Oxidative Stress , Animals , Antioxidants/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/enzymology , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Cell Differentiation , Cell Survival/drug effects , Cytokines/biosynthesis , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression , Heme Oxygenase (Decyclizing)/metabolism , Hemin/toxicity , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/toxicity , Mesenchymal Stem Cells/enzymology , Mesenchymal Stem Cells/immunology , Mice , Mice, Knockout , Phenotype
20.
Cell Chem Biol ; 24(4): 458-470.e18, 2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28343940

ABSTRACT

USP2a is a deubiquitinase responsible for stabilization of cyclin D1, a crucial regulator of cell-cycle progression and a proto-oncoprotein overexpressed in numerous cancer types. Here we report that lithocholic acid (LCA) derivatives are inhibitors of USP proteins, including USP2a. The most potent LCA derivative, LCA hydroxyamide (LCAHA), inhibits USP2a, leading to a significant Akt/GSK3ß-independent destabilization of cyclin D1, but does not change the expression of p27. This leads to the defects in cell-cycle progression. As a result, LCAHA inhibits the growth of cyclin D1-expressing, but not cyclin D1-negative cells, independently of the p53 status. We show that LCA derivatives may be considered as future therapeutics for the treatment of cyclin D1-addicted p53-expressing and p53-defective cancer types.


Subject(s)
Cyclin D1/metabolism , Endopeptidases/metabolism , G1 Phase Cell Cycle Checkpoints/drug effects , Lithocholic Acid/analogs & derivatives , Catalytic Domain , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclin D1/antagonists & inhibitors , Cyclin D1/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cycloheximide/chemistry , Cycloheximide/pharmacology , Down-Regulation/drug effects , Endopeptidases/chemistry , Endopeptidases/genetics , Glycogen Synthase Kinase 3 beta/metabolism , HCT116 Cells , Humans , Lithocholic Acid/pharmacology , MCF-7 Cells , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , Signal Transduction/drug effects , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitin Thiolesterase
SELECTION OF CITATIONS
SEARCH DETAIL
...