Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Hum Neurosci ; 18: 1392100, 2024.
Article in English | MEDLINE | ID: mdl-38903408

ABSTRACT

Sleep disturbances and drug-resistant seizures significantly impact people with idiopathic generalized epilepsy (IGE). Thalamic deep brain stimulation (DBS) offers potential treatment, but its effect on sleep and seizure control needs clarification. In this study, we combined wearable sleep monitoring with electroencephalogram (EEG) confirmation to investigate the impact of nocturnal centromedian nucleus (CM) DBS parameters in a patient with drug-resistant IGE. We found that high-frequency (125 Hz) CM stimulation during sleep severely disrupted sleep macro architecture and exacerbated seizures. Conversely, switching to low-frequency (10 Hz) stimulation enhanced both sleep quality and seizure control. This study underscores the critical need to personalize DBS settings, tailoring them to individual patients' sleep patterns to maximize therapeutic benefits. While larger-scale trials are needed, our findings pave the way for patient-centric approaches to thalamic neuromodulation, offering a transformative path to improve treatment outcomes and quality of life for those with refractory epilepsy.

2.
Phys Rev E ; 105(6): L062203, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35854537

ABSTRACT

This Letter investigates the transition to synchronization of oscillator ensembles encoded by simplicial complexes in which pairwise and higher-order coupling weights alter with time through a rate-based adaptive mechanism inspired by the Hebbian learning rule. These simultaneously evolving disparate adaptive coupling weights lead to a phenomenon in that the in-phase synchronization is completely obliterated; instead, the antiphase synchronization is originated. In addition, the onsets of antiphase synchronization and desynchronization are manageable through both dyadic and triadic learning rates. The theoretical validation of these numerical assessments is delineated thoroughly by employing Ott-Antonsen dimensionality reduction. The framework and results of the Letter would help understand the underlying synchronization behavior of a range of real-world systems, such as the brain functions and social systems where interactions evolve with time.

3.
Phys Rev E ; 104(4): L042301, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34781501

ABSTRACT

This Letter investigates the nature of synchronization in multilayered and multiplexed populations in which the interlayer interactions are randomly pinned. First, we show that a multilayer network constructed by setting up all-to-all interlayer connections between the two populations leads to explosive synchronization in the two populations successively, leading to the coexistence of coherent and incoherent populations forming chimera states. Second, a multiplex formation of the two populations in which only the mirror nodes are interconnected espouses explosive transitions in the two populations concurrently. The occurrence of both explosive synchronization and chimera are substantiated with rigorous theoretical mean-field analysis. The random pinning in the interlayer interactions concerns the practical problems where the impact of dynamics of one network on that of other interconnected networks remains elusive, as is the case for many real-world systems.

4.
Sci Rep ; 11(1): 133, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420243

ABSTRACT

Networks have been established as an extremely powerful framework to understand and predict the behavior of many large-scale complex systems. We studied network motifs, the basic structural elements of networks, to describe the possible role of co-occurrence of genomic variations behind high altitude adaptation in the Asian human population. Mitochondrial DNA (mtDNA) variations have been acclaimed as one of the key players in understanding the biological mechanisms behind adaptation to extreme conditions. To explore the cumulative effects of variations in the mitochondrial genome with the variation in the altitude, we investigated human mt-DNA sequences from the NCBI database at different altitudes under the co-occurrence motifs framework. Analysis of the co-occurrence motifs using similarity clustering revealed a clear distinction between lower and higher altitude regions. In addition, the previously known high altitude markers 3394 and 7697 (which are definitive sites of haplogroup M9a1a1c1b) were found to co-occur within their own gene complexes indicating the impact of intra-genic constraint on co-evolution of nucleotides. Furthermore, an ancestral 'RSRS50' variant 10,398 was found to co-occur only at higher altitudes supporting the fact that a separate route of colonization at these altitudes might have taken place. Overall, our analysis revealed the presence of co-occurrence interactions specific to high altitude at a whole mitochondrial genome level. This study, combined with the classical haplogroups analysis is useful in understanding the role of co-occurrence of mitochondrial variations in high altitude adaptation.


Subject(s)
Altitude , Asian People/genetics , Genome, Human , Genome, Mitochondrial , Adaptation, Physiological , DNA, Mitochondrial/genetics , Humans , Mutation
5.
Chaos ; 31(12): 123130, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34972326

ABSTRACT

Inhibitory couplings are crucial for the normal functioning of many real-world complex systems. Inhibition in one layer has been shown to induce explosive synchronization in another excitatory (or positive) layer of duplex networks. By extending this framework to multiplex networks, this article shows that inhibition in a single layer can act as a catalyst, leading to explosive synchronization transitions in the rest of the layers feed-forwarded through intermediate layer(s). Considering a multiplex network of coupled Kuramoto oscillators, we demonstrate that the characteristics of the transition emergent in a layer can be entirely controlled by the intra-layer coupling of other layers and the multiplexing strengths. The results presented here are essential to fathom the synchronization behavior of coupled dynamical units in multi-layer systems possessing inhibitory coupling in one of its layers, representing the importance of multiplexing.


Subject(s)
Explosive Agents , Computer Simulation
6.
Phys Rev E ; 99(6-1): 062305, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31330578

ABSTRACT

To date, explosive synchronization (ES) in a network is shown to be originated from considering either degree-frequency correlation, frequency-coupling strength correlation, inertia, or adaptively controlled phase oscillators. Here we show that ES is a generic phenomenon and can occur in any network by multiplexing it with an appropriate layer without even considering any prerequisite for the emergence of ES. We devise a technique which leads to the occurrence of ES with hysteresis loop in a network upon its multiplexing with a negatively coupled (or inhibitory) layer. The impact of various structural properties of positively coupled (or excitatory) and inhibitory layers along with the strength of multiplexing in gaining control over the induced ES transition is discussed. Analytical prediction for the spread of phase distribution of each layer is provided, which is in good agreement with the numerical assessment. This investigation is a step forward in highlighting the importance of multiplex framework not only in bringing phenomena which are not possible in an isolated network but also in providing more structural control over the induced phenomena.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(2 Pt 2): 026104, 2012 Aug.
Article in English | MEDLINE | ID: mdl-23005822

ABSTRACT

We analyze an idealized model for the transmission or flow of particles, or discrete packets of information, in a weight bearing branching hierarchical two dimensional network and its variants. The capacities add hierarchically down the clusters. Each node can accommodate a limited number of packets, depending on its capacity, and the packets hop from node to node, following the links between the nodes. The statistical properties of this system are given by the Maxwell-Boltzmann distribution. We obtain analytical expressions for the mean occupation numbers as functions of capacity, for different network topologies. The analytical results are shown to be in agreement with the numerical simulations. The traffic flow in these models can be represented by the site percolation problem. It is seen that the percolation transitions in the 2D model and in its variant lattices are continuous transitions, whereas the transition is found to be explosive (discontinuous) for the V lattice, the critical case of the 2D lattice. The scaling behavior of the second-order percolation case is studied in detail. We discuss the implications of our analysis.


Subject(s)
Computer Communication Networks , Computer Simulation , Algorithms , Cluster Analysis , Information Systems , Models, Statistical , Movement , Physics/methods , Probability
8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(3 Pt 2): 036107, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21517558

ABSTRACT

We investigate the statistics and dynamics of failure in a two-dimensional load-bearing network with branching hierarchical structure, and its variants. The variants strengthen the original lattice by using connectivity strategies which add new sites to the maximal cluster in top-to-bottom or bottom-to-top versions. We study the load-bearing capacity and the failure tolerance of all versions, as well as that of the strongest realization of the original lattice, the V lattice. The average number of failures as a function of the test load shows power-law behavior with power 5/2 for the V lattice, but sigmoidal behavior for all other versions. Thus the V lattice turns out to be the critical case of the load-bearing lattices. The distribution of failures is Gaussian for the original lattice, the V lattice, and the bottom-to-top strategy, but is non-Gaussian for the top-to-bottom one. The bottom-to-top strategy leads to stable and strong lattices, and can resist failure even when tested with weights which greatly exceed the capacity of its backbone. We also examine the behavior of asymmetric lattices and discover that the mean failure rates are minimized if the probability of connection p is symmetric with respect to both neighbors. Our results can be of relevance in the context of realistic networks.

SELECTION OF CITATIONS
SEARCH DETAIL
...