Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Am J Transplant ; 17(5): 1193-1203, 2017 May.
Article in English | MEDLINE | ID: mdl-27888551

ABSTRACT

Costimulation blockade (CoB) via belatacept is a lower-morbidity alternative to calcineurin inhibitor (CNI)-based immunosuppression. However, it has higher rates of early acute rejection. These early rejections are mediated in part by memory T cells, which have reduced dependence on the pathway targeted by belatacept and increased adhesion molecule expression. One such molecule is leukocyte function antigen (LFA)-1. LFA-1 exists in two forms: a commonly expressed, low-affinity form and a transient, high-affinity form, expressed only during activation. We have shown that antibodies reactive with LFA-1 regardless of its configuration are effective in eliminating memory T cells but at the cost of impaired protective immunity. Here we test two novel agents, leukotoxin A and AL-579, each of which targets the high-affinity form of LFA-1, to determine whether this more precise targeting prevents belatacept-resistant rejection. Despite evidence of ex vivo and in vivo ligand-specific activity, neither agent when combined with belatacept proved superior to belatacept monotherapy. Leukotoxin A approached a ceiling of toxicity before efficacy, while AL-579 failed to significantly alter the peripheral immune response. These data, and prior studies, suggest that LFA-1 blockade may not be a suitable adjuvant agent for CoB-resistant rejection.


Subject(s)
Abatacept/pharmacology , Graft Rejection/drug therapy , Graft Survival/immunology , Immunologic Memory/immunology , Kidney Transplantation/adverse effects , Lymphocyte Function-Associated Antigen-1/chemistry , T-Lymphocytes/immunology , Animals , Disease Models, Animal , Glomerular Filtration Rate , Graft Rejection/etiology , Graft Rejection/pathology , Graft Survival/drug effects , Immunologic Memory/drug effects , Immunosuppressive Agents/pharmacology , Kidney Function Tests , Lymphocyte Function-Associated Antigen-1/metabolism , Macaca mulatta , Postoperative Complications , T-Lymphocytes/drug effects , T-Lymphocytes/pathology
2.
Microb Pathog ; 51(1-2): 22-30, 2011.
Article in English | MEDLINE | ID: mdl-21443941

ABSTRACT

Kingella kingae is an emerging pathogen causing osteoarticular infections in pediatric patients. Electron microscopy of K. kingae clinical isolates revealed the heterogeneously-sized membranous structures blebbing from the outer membrane that were classified as outer membrane vesicles (OMVs). OMVs purified from the secreted fraction of a septic arthritis K. kingae isolate were characterized. Among several major proteins, K. kingae OMVs contained virulence factors RtxA toxin and PilC2 pilus adhesin. RtxA was also found secreted as a soluble protein in the extracellular environment indicating that the bacterium may utilize different mechanisms for the toxin delivery. OMVs were shown to be hemolytic and possess some leukotoxic activity while high leukotoxicity was detected in the non-hemolytic OMV-free component of the secreted fraction. OMVs were internalized by human osteoblasts and synovial cells. Upon interaction with OMVs, the cells produced increased levels of human granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 6 (IL-6) suggesting that these cytokines might be involved in the signaling response of infected joint and bone tissues during natural K. kingae infection. This study is the first report of OMV production by K. kingae and demonstrates that OMVs are a complex virulence factor of the organism causing cytolytic and inflammatory effects on host cells.


Subject(s)
Bacterial Outer Membrane Proteins/toxicity , Cell Membrane/ultrastructure , Kingella kingae/pathogenicity , Osteoblasts/pathology , Synovial Fluid/cytology , Virulence Factors/toxicity , Animals , Arthritis, Infectious/microbiology , Bacterial Outer Membrane Proteins/metabolism , Bacterial Toxins/metabolism , Bacterial Toxins/pharmacology , Cell Membrane/chemistry , Child , Cytokines/metabolism , Fimbriae Proteins/metabolism , Fimbriae Proteins/pharmacology , Humans , Kingella kingae/isolation & purification , Kingella kingae/ultrastructure , Mice , Osteoblasts/cytology , Osteoblasts/immunology , Synovial Fluid/drug effects , Synovial Fluid/immunology , Virulence Factors/immunology , Virulence Factors/metabolism
3.
J Dent Res ; 89(6): 561-70, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20200418

ABSTRACT

Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium that colonizes the human oral cavity and is the causative agent for localized aggressive periodontitis (LAP), an aggressive form of periodontal disease that occurs in adolescents. A. actinomycetemcomitans secretes a protein toxin, leukotoxin (LtxA), which helps the bacterium evade the host immune response during infection. LtxA is a membrane-active toxin that specifically targets white blood cells (WBCs). In this review, we discuss recent developments in this field, including the identification and characterization of genes and proteins involved in secretion, regulation of LtxA, biosynthesis, newly described activities of LtxA, and how LtxA may be used as a therapy for the treatment of diseases.


Subject(s)
Aggregatibacter actinomycetemcomitans/physiology , Bacterial Toxins/pharmacology , Cytotoxins/pharmacology , Exotoxins/pharmacology , Actinobacillus Infections/immunology , Actinobacillus Infections/microbiology , Adolescent , Aggregatibacter actinomycetemcomitans/genetics , Aggregatibacter actinomycetemcomitans/immunology , Aggressive Periodontitis/immunology , Aggressive Periodontitis/microbiology , Bacterial Toxins/genetics , Bacterial Toxins/therapeutic use , Cytotoxins/genetics , Cytotoxins/therapeutic use , Exotoxins/genetics , Exotoxins/therapeutic use , Humans , Immunosuppressive Agents/therapeutic use , Leukocytes/drug effects
4.
Infect Immun ; 75(10): 4851-6, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17635865

ABSTRACT

Aggregatibacter (Actinobacillus) actinomycetemcomitans is the causative organism of localized aggressive periodontitis, a rapidly progressing degenerative disease of the gingival and periodontal ligaments, and is also implicated in causing subacute infective endocarditis in humans. The bacterium produces a variety of virulence factors, including an exotoxic leukotoxin (LtxA) that is a member of the repeats-in-toxin (RTX) family of bacterial cytolysins. LtxA exhibits a unique specificity to macrophages and polymorphonuclear cells of humans and other primates. Human lymphocyte function-associated antigen 1 (LFA-1) has been implicated as the putative receptor for LtxA. Human LFA-1 comprises the CD11a and CD18 subunits. It is not clear, however, which of its subunits serves as the functional receptor that confers species-specific susceptibility to LtxA. Here we demonstrate that the human CD18 is the receptor for LtxA based on experiments performed with chimeric beta2-integrins recombinantly expressed in a cell line that is resistant to LtxA effects. In addition, we show that the cysteine-rich tandem repeats encompassing integrin-epidermal growth factor-like domains 2, 3, and 4 of the extracellular region of human CD18 are critical for conferring susceptibility to LtxA-induced biological effects.


Subject(s)
Aggregatibacter actinomycetemcomitans/pathogenicity , CD18 Antigens/metabolism , Exotoxins/metabolism , Amino Acid Motifs , CD18 Antigens/chemistry , CD18 Antigens/genetics , Cell Line , Exotoxins/toxicity , Humans , Leukocytes/microbiology , Protein Binding , Protein Interaction Mapping , Protein Structure, Tertiary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Species Specificity
5.
J Bacteriol ; 188(17): 6361-75, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16923904

ABSTRACT

The tad locus of Actinobacillus actinomycetemcomitans encodes a molecular transport system required for tenacious, nonspecific adherence to surfaces and formation of extremely strong biofilms. This locus is dedicated to the biogenesis of Flp pili, which are required for colonization and virulence. We have previously shown that 11 of the 14 tad locus genes are required for adherence and Flp pilus production. Here, we present genetic and phylogenetic analyses of flp-2, tadV, and rcpB genes in biofilm formation. We show that tadV, predicted to encode prepilin peptidase, is required for adherence. In contrast, targeted insertional inactivation of flp-2, a gene closely related to the prepillin gene flp-1, did not abrogate biofilm formation. Expression studies did not detect Flp2-T7 protein under standard laboratory conditions. We present phylogenetic data showing that there is no significant evidence for natural selection in the available flp-2 sequences from A. actinomycetemcomitans, suggesting that flp-2 does not play a significant role in the biology of this organism. Mutants with insertions at the 3' end of rcpB formed biofilms equivalent to wild-type A. actinomycetemcomitans. Surprisingly, 5' end chromosomal insertion mutants in rcpB were obtained only when a wild-type copy of the rcpB gene was provided in trans or when the Tad secretion system was inactivated. Together, our results strongly suggest that A. actinomycetemcomitans rcpB is essential in the context of a functional tad locus. These data show three different phenotypes for the three genes.


Subject(s)
Aggregatibacter actinomycetemcomitans/physiology , Bacterial Outer Membrane Proteins/physiology , Bacterial Proteins/physiology , Biofilms/growth & development , Endopeptidases/physiology , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Endopeptidases/genetics , Fimbriae Proteins/genetics , Fimbriae, Bacterial/genetics , Genes, Bacterial , Molecular Sequence Data , Mutagenesis , Phenotype
6.
Trends Microbiol ; 9(9): 429-37, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11553455

ABSTRACT

The Gram-negative periodontal pathogen Actinobacillus actinomycetemcomitans forms an extremely tenacious biofilm on solid surfaces such as glass, plastic and hydroxyapatite. This characteristic is likely to be important for colonization of the oral cavity and initiation of a potentially devastating form of periodontal disease. Genetic analysis has revealed a cluster of tad genes responsible for tight adherence to surfaces. Evidence indicates that the tad genes are part of a locus encoding a novel secretion system for the assembly and release of long, bundled Flp pili. Remarkably similar tad loci appear in the genomes of a wide variety of Gram-negative and Gram-positive bacteria, including many significant pathogens, and in Archaea. We propose that the tad loci are important for microbial colonization in a variety of environmental niches.


Subject(s)
Aggregatibacter actinomycetemcomitans/genetics , Aggregatibacter actinomycetemcomitans/pathogenicity , Bacterial Adhesion/genetics , Genes, Bacterial/genetics , Aggregatibacter actinomycetemcomitans/physiology , Amino Acid Sequence , Biofilms , DNA Transposable Elements/genetics , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/metabolism , Genes, Archaeal/genetics , Humans , Molecular Sequence Data , Virulence/genetics
7.
J Bacteriol ; 183(20): 5927-36, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11566992

ABSTRACT

Cells of Actinobacillus actinomycetemcomitans, a gram-negative pathogen responsible for an aggressive form of juvenile periodontitis, form tenaciously adherent biofilms on solid surfaces. The bacteria produce long fibrils of bundled pili, which are required for adherence. Mutations in flp-1, which encodes the major subunit of the pili, or any of seven downstream tad genes (tadABCDEFG) cause defects in fibril production, autoaggregation, and tenacious adherence. We proposed that the tad genes specify part of a novel secretion system for the assembly and transport of Flp pili. The predicted amino acid sequence of TadA (426 amino acids, 47,140 Da) contains motifs for nucleotide binding and hydrolysis common among secretion NTP hydrolase (NTPase) proteins. In addition, the tadA gene is the first representative of a distinct subfamily of potential type IV secretion NTPase genes. Here we report studies on the function of TadA. The tadA gene was altered to express a modified version of TadA that has the 11-residue epitope (T7-TAG) fused to its C terminus. The TadA-T7 protein was indistinguishable from the wild type in its ability to complement the fibril and adherence defects of A. actinomycetemcomitans tadA mutants. Although TadA is not predicted to have a transmembrane domain, the protein was localized to the inner membrane and cytoplasmic fractions of A. actinomycetemcomitans cells, indicating a possible peripheral association with the inner membrane. TadA-T7 was purified and found to hydrolyze ATP in vitro. The ATPase activity is stimulated by Triton X-100, with maximal stimulation at the critical micellar concentration. TadA-T7 forms multimers that are stable during sodium dodecyl sulfate-polyacrylamide gel electrophoresis in nonreducing conditions, and electron microscopy revealed that TadA-T7 can form structures closely resembling the hexameric rings of other type IV secretion NTPases. Site-directed mutagenesis was used to substitute Ala and Gln residues for the conserved Lys residue of the Walker A box for nucleotide binding. Both mutants were found to be defective in their ability to complement tadA mutants. We suggest that the ATPase activity of TadA is required to energize the assembly or secretion of Flp pili for tight adherence of A. actinomycetemcomitans.


Subject(s)
Adenosine Triphosphatases/physiology , Aggregatibacter actinomycetemcomitans/physiology , Bacterial Adhesion/physiology , Bacterial Proteins/metabolism , Fimbriae, Bacterial/metabolism , Acid Anhydride Hydrolases/genetics , Aggregatibacter actinomycetemcomitans/ultrastructure , Amino Acid Sequence , Conserved Sequence , Genetic Complementation Test , Mutation , Nucleoside-Triphosphatase
8.
Mol Microbiol ; 40(3): 542-54, 2001 May.
Article in English | MEDLINE | ID: mdl-11359562

ABSTRACT

Actinobacillus actinomycetemcomitans, a Gram-negative bacterium responsible for localized juvenile periodontitis and other infections such as endocarditis, produces long fibrils of bundled pili that are believed to mediate non-specific, tenacious adherence to surfaces. Previous investigations have implicated an abundant, small ( approximately 6.5 kDa), fibril-associated protein (Flp/Fap) as the primary fibril subunit. Here, we report studies on fibril structure and on the function and evolution of Flp. High-resolution electron microscopy of adherent clinical strain CU1000N revealed long bundles of 5- to 7-nm-diameter pili, whose subunits appear to be arranged in a helical array similar to that observed for type IV pili in other bacteria. Fibrils were found to be associated with the bacterial cell surface and smaller structures thought to be membrane vesicles. A modified version of the CU1000N Flp1 polypeptide with the T7-TAG epitope fused to its C-terminus was expressed in the wild-type strain, and the presence of the modified Flp1 in fibrils was confirmed by immunogold electron microscopy with monoclonal antibody to T7-TAG. To determine the importance of Flp1 in fibril formation and cell adherence, we used transposon IS903phikan to isolate insertion mutations in the flp-1 gene (formerly designated flp). Mutants with insertions early in flp-1 fail to produce fibrils and do not adhere to surfaces. Both fibril production and adherence were restored by cloned flp-1 in trans, thus providing the first evidence that flp-1 is required for fibril formation and tight, non-specific adherence. One mutant was found to have an insertion near the 3' end of flp-1 that results in the expression of a truncated and altered C-terminus of Flp1. This mutant produced short, unbundled pili, and its adherence to surfaces was significantly less than that of wild-type bacteria. These findings and related observations with the Flp1-T7-TAG protein indicate that the C-terminus of Flp1 is important for the bundling and adherence properties of pili. Extensive sequence comparisons and phylogenetic analysis of 61 predicted prepilin genes of bacteria revealed flp-1 to be a member of a novel and widespread subfamily of type IV prepilin genes. Thus, Flp pili are likely to be expressed by diverse bacterial species. Furthermore, we found that it is common for bacterial genomes to contain multiple alleles of flp-like genes, including the open reading frame (flp-2, previously designated orfA) immediately downstream of flp-1 in A. actinomycetemcomitans. The duplication and divergence of flp genes in bacteria may be important to the diversification of the colonization properties of these organisms.


Subject(s)
Bacterial Adhesion/physiology , Gram-Negative Bacteria/physiology , Membrane Proteins/metabolism , Amino Acid Sequence , Base Sequence , DNA, Bacterial , Fimbriae Proteins , Genes, Bacterial , Gram-Negative Bacteria/metabolism , Gram-Negative Bacteria/ultrastructure , Membrane Proteins/genetics , Microscopy, Electron/methods , Molecular Sequence Data , Mutagenesis , Protein Precursors/genetics , Sequence Homology, Amino Acid
9.
Proc Natl Acad Sci U S A ; 98(5): 2503-8, 2001 Feb 27.
Article in English | MEDLINE | ID: mdl-11226268

ABSTRACT

Macromolecular transport systems in bacteria currently are classified by function and sequence comparisons into five basic types. In this classification system, type II and type IV secretion systems both possess members of a superfamily of genes for putative NTP hydrolase (NTPase) proteins that are strikingly similar in structure, function, and sequence. These include VirB11, TrbB, TraG, GspE, PilB, PilT, and ComG1. The predicted protein product of tadA, a recently discovered gene required for tenacious adherence of Actinobacillus actinomycetemcomitans, also has significant sequence similarity to members of this superfamily and to several unclassified and uncharacterized gene products of both Archaea and Bacteria. To understand the relationship of tadA and tadA-like genes to those encoding the putative NTPases of type II/IV secretion, we used a phylogenetic approach to obtain a genealogy of 148 NTPase genes and reconstruct a scenario of gene superfamily evolution. In this phylogeny, clear distinctions can be made between type II and type IV families and their constituent subfamilies. In addition, the subgroup containing tadA constitutes a novel and extremely widespread subfamily of the family encompassing all putative NTPases of type IV secretion systems. We report diagnostic amino acid residue positions for each major monophyletic family and subfamily in the phylogenetic tree, and we propose an easy method for precisely classifying and naming putative NTPase genes based on phylogeny. This molecular key-based method can be applied to other gene superfamilies and represents a valuable tool for genome analysis.


Subject(s)
Acid Anhydride Hydrolases/genetics , Genes, Bacterial , Multigene Family , Phylogeny , Aggregatibacter actinomycetemcomitans/genetics , Aggregatibacter actinomycetemcomitans/physiology , Bacterial Adhesion/genetics , Molecular Sequence Data , Nucleoside-Triphosphatase
10.
Environ Microbiol ; 3(12): 774-84, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11846771

ABSTRACT

The aromatic hydrocarbon-degrading bacterium, Pseudomonas putida G7, produces exopolymers of potential interest in biotechnological applications. These exopolymers have been shown to have significant metal-binding ability. To initiate the study of the metal-polymer interactions, we explored the physical and chemical nature of the P. putida G7 exopolysaccharide, a major component of the exopolymer. A capsular structure was observed by light microscopy surrounding both planktonic and attached cells in biofilms after immunofluorescence staining with polyclonal antiserum raised against planktonic cells. Further work with planktonic cells showed that the immunostained capsule remained associated with young (log phase) cells, whereas older (stationary phase) cells lost their capsular material to the external milieu. Visualization of frozen, hydrated stationary phase cells by cryo-field emission scanning electron microscopy (cryoFESEM) revealed highly preserved extracellular material. In contrast, conventional scanning electron microscopy (SEM) of stationary phase cells showed rope-like material that most probably results from dehydrated and collapsed exopolymer. Both capsular and released exopolymers were separated from cells, and the released extracellular polysaccharide (EPS) was purified. Deoxycholate-polyacrylamide gel electrophoresis (PAGE) and silver/alcian blue staining of the partially purified material showed that it contained both EPS and lipopolysaccharide (LPS). Further purification of the EPS using a differential solubilization technique to remove LPS yielded highly purified EPS. Gas chromatography-mass spectrometry revealed that the purified EPS contained the monosaccharides, glucose, rhamnose, ribose, N-acetylgalactosamine and glucuronic acid. The structural and chemical properties of the P. putida EPS described here increase our understanding of the mechanisms of toxic metal binding by this well-known Proteobacterium.


Subject(s)
Bacterial Capsules/chemistry , Polysaccharides, Bacterial/chemistry , Pseudomonas putida/chemistry , Bacterial Capsules/isolation & purification , Bacterial Capsules/ultrastructure , Biodegradation, Environmental , Biopolymers/chemistry , Metals/chemistry , Metals/toxicity , Polysaccharides, Bacterial/isolation & purification , Pseudomonas putida/metabolism , Pseudomonas putida/ultrastructure
11.
J Bacteriol ; 182(21): 6169-76, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11029439

ABSTRACT

The gram-negative coccobacillus, Actinobacillus actinomycetemcomitans, is the putative agent for localized juvenile periodontitis, a particularly destructive form of periodontal disease in adolescents. This bacterium has also been isolated from a variety of other infections, notably endocarditis. Fresh clinical isolates of A. actinomycetemcomitans form tenacious biofilms, a property likely to be critical for colonization of teeth and other surfaces. Here we report the identification of a locus of seven genes required for nonspecific adherence of A. actinomycetemcomitans to surfaces. The recently developed transposon IS903phikan was used to isolate mutants of the rough clinical isolate CU1000 that are defective in tight adherence to surfaces (Tad(-)). Unlike wild-type cells, Tad(-) mutant cells adhere poorly to surfaces, fail to form large autoaggregates, and lack long, bundled fibrils. Nucleotide sequencing and genetic complementation analysis revealed a 6.7-kb region of the genome with seven adjacent genes (tadABCDEFG) required for tight adherence. The predicted TadA polypeptide is similar to VirB11, an ATPase involved in macromolecular transport. The predicted amino acid sequences of the other Tad polypeptides indicate membrane localization but no obvious functions. We suggest that the tad genes are involved in secretion of factors required for tight adherence of A. actinomycetemcomitans. Remarkably, complete and highly conserved tad gene clusters are present in the genomes of the bubonic plague bacillus Yersinia pestis and the human and animal pathogen Pasteurella multocida. Partial tad loci also occur in strikingly diverse Bacteria and Archaea. Our results show that the tad genes are required for tight adherence of A. actinomycetemcomitans to surfaces and are therefore likely to be essential for colonization and pathogenesis. The occurrence of similar genes in a wide array of microorganisms indicates that they have important functions. We propose that tad-like genes have a significant role in microbial colonization.


Subject(s)
Aggregatibacter actinomycetemcomitans/genetics , Bacterial Adhesion/genetics , Bacterial Outer Membrane Proteins/genetics , Genes, Archaeal , Genes, Bacterial , Virulence Factors , Aggregatibacter actinomycetemcomitans/chemistry , Bacterial Proteins/genetics , DNA Transposable Elements , Genetic Vectors , Humans , Macromolecular Substances , Molecular Sequence Data , Mutagenesis, Insertional
12.
Infect Immun ; 68(11): 6094-100, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11035711

ABSTRACT

Actinobacillus actinomycetemcomitans, the etiologic agent for localized juvenile periodontitis and certain other human infections, such as endocarditis, expresses a leukotoxin that acts on polymorphonuclear leukocytes and macrophages. Leukotoxin is a member of the highly conserved repeat toxin (RTX) family of bacterial toxins expressed by a variety of pathogenic bacteria. While the RTX toxins of other bacterial species are secreted, the leukotoxin of A. actinomycetemcomitans is thought to remain associated with the bacterial cell. We have examined leukotoxin production and localization in rough (adherent) and smooth (nonadherent) strains of A. actinomycetemcomitans. We found that leukotoxin expressed by the rough, adherent, clinical isolate CU1000N is indeed cell associated, as expected. However, we were surprised to find that smooth, nonadherent strains of A. actinomycetemcomitans, including Y4, JP2 (a strain expressing a high level of toxin), and CU1060N (an isogenic smooth variant of CU1000N), secrete an abundance of leukotoxin into the culture supernatants during early stages of growth. After longer times of incubation, leukotoxin disappears from the supernatants, and its loss is accompanied by the appearance of a number of low-molecular-weight polypeptides. The secreted leukotoxin is active, as evidenced by its ability to kill HL-60 cells in vitro. We found that the growth phase and initial pH of the growth medium significantly affect the abundance of secreted leukotoxin, and we have developed a rapid (<2 h) method to partially purify large amounts of leukotoxin. Remarkably, mutations in the tad genes, which are required for tight nonspecific adherence of A. actinomycetemcomitans to surfaces, cause leukotoxin to be released from the bacterial cell. These studies show that A. actinomycetemcomitans has the potential to secrete abundant leukotoxin. It is therefore appropriate to consider a possible role for leukotoxin secretion in the pathogenesis of A. actinomycetemcomitans.


Subject(s)
Aggregatibacter actinomycetemcomitans/pathogenicity , Bacterial Toxins/metabolism , Exotoxins/metabolism , Aggregatibacter actinomycetemcomitans/genetics , Bacterial Adhesion , Exotoxins/isolation & purification , Exotoxins/toxicity , Genes, Bacterial , HL-60 Cells , Humans , Hydrogen-Ion Concentration , Multigene Family
SELECTION OF CITATIONS
SEARCH DETAIL
...