Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 13769, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37612341

ABSTRACT

New measurements from the Arctic ± 40 days around the summer solstice show reflected sunlight from north of 80°N decreases 20-35%. Arctic sea ice coverage decreases 7-9% over this same time period (as reported by the NSIDC) implying Arctic sea ice albedo decreases in addition to the sea ice receding. Similar Antarctic measurements provide a baseline to which Arctic measurements are compared. The Antarctic reflected sunlight south of 80°S is up to 30% larger than the Arctic reflectance and is symmetric around the solstice implying constant Antarctic reflectivity. Arctic reflected sunlight 20 days after solstice is > 100W/m2 less than Antarctic reflected sunlight. For perspective, this is enough heat to melt > 1 mm/hour of ice. This finding should be compared with climate models and in reanalysis data sets to further quantify sea ice albedo's role in Arctic Amplification. The measurements were made with previously unpublished pixelated radiometers on Global Positioning System satellites from 2014 to 2019. The GPS orbits give each radiometer instantaneous and continuous views of 37% of the Earth, two daily full views of the Arctic and Antarctic. Furthermore, the GPS constellation gives full-time full-Earth coverage that may provide data that complements existing limited field of view instruments that provide a less synoptic Earth view.

2.
Int J Radiat Oncol Biol Phys ; 101(5): 1179-1187, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29908785

ABSTRACT

PURPOSE: This study aims to combine multiparametric magnetic resonance imaging (MRI) and digitized pathology with machine learning to generate predictive maps of histologic features for prostate cancer localization. METHODS AND MATERIALS: Thirty-nine patients underwent MRI prior to prostatectomy. After surgery, tissue was sliced according to MRI orientation using patient-specific 3-dimensionally printed slicing jigs. Whole-mount sections were annotated by our pathologist and digitally contoured to differentiate the lumen and epithelium. Slides were co-registered to the T2-weighted MRI scan. A learning curve was generated to determine the number of patients required for a stable machine-learning model. Patients were randomly stratified into 2 training sets and 1 test set. Two partial least-squares regression models were trained, each capable of predicting lumen and epithelium density. Predicted density values were calculated for each patient in the test dataset, mapped into the MRI space, and compared between regions confirmed as high-grade prostate cancer. RESULTS: The learning-curve analysis showed that a stable fit was achieved with data from 10 patients. Maps indicated that regions of increased epithelium and decreased lumen density, generated from each independent model, corresponded with pathologist-annotated regions of high-grade cancer. CONCLUSIONS: We present a radio-pathomic approach to mapping prostate cancer. We find that the maps are useful for highlighting high-grade tumors. This technique may be relevant for dose-painting strategies in prostate radiation therapy.


Subject(s)
Epithelium/diagnostic imaging , Magnetic Resonance Imaging , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Aged , Contrast Media , Epithelium/pathology , False Positive Reactions , Humans , Image Interpretation, Computer-Assisted , Learning Curve , Least-Squares Analysis , Machine Learning , Male , Middle Aged , Neoplasm Staging , Printing, Three-Dimensional , Prospective Studies , Prostate/pathology , Prostate-Specific Antigen/blood , Prostatectomy , ROC Curve , Radiotherapy , Regression Analysis , Reproducibility of Results
3.
J Med Imaging (Bellingham) ; 5(1): 011004, 2018 01.
Article in English | MEDLINE | ID: mdl-29098169

ABSTRACT

Multiparametric magnetic resonance imaging (MP-MRI), including diffusion-weighted imaging, is commonly used to diagnose prostate cancer. This radiology-pathology study correlates prostate cancer grade and morphology with common b-value combinations for calculating apparent diffusion coefficient (ADC). Thirty-nine patients undergoing radical prostatectomy were recruited for MP-MRI prior to surgery. Diffusion imaging was collected with seven b-values, and ADC was calculated. Excised prostates were sliced in the same orientation as the MRI using 3-D printed slicing jigs. Whole-mount slides were digitized and annotated by a pathologist. Annotated samples were aligned to the MRI, and ADC values were extracted from annotated peripheral zone (PZ) regions. A receiver operating characteristic (ROC) analysis was performed to determine accuracy of tissue type discrimination and optimal ADC b-value combination. ADC significantly discriminates Gleason (G) G4-5 cancer from G3 and other prostate tissue types. The optimal b-values for discriminating high from low-grade and noncancerous tissue in the PZ are 50 and 2000, followed closely by 100 to 2000 and 0 to 2000. Optimal ADC cut-offs are presented for dichotomized discrimination of tissue types according to each b-value combination. Selection of b-values affects the sensitivity and specificity of ADC for discrimination of prostate cancer.

4.
Tomography ; 2(3): 223-228, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27774518

ABSTRACT

Magnetic resonance imaging (MRI) is used to diagnose and monitor brain tumors. Extracting additional information from medical imaging and relating it to a clinical variable of interest is broadly defined as radiomics. Here, multiparametric MRI radiomic profiles (RPs) of de novo glioblastoma (GBM) brain tumors is related with patient prognosis. Clinical imaging from 81 patients with GBM before surgery was analyzed. Four MRI contrasts were aligned, masked by margins defined by gadolinium contrast enhancement and T2/fluid attenuated inversion recovery hyperintensity, and contoured based on image intensity. These segmentations were combined for visualization and quantification by assigning a 4-digit numerical code to each voxel to indicate the segmented RP. Each RP volume was then compared with overall survival. A combined classifier was then generated on the basis of significant RPs and optimized volume thresholds. Five RPs were predictive of overall survival before therapy. Combining the RP classifiers into a single prognostic score predicted patient survival better than each alone (P < .005). Voxels coded with 1 RP associated with poor prognosis were pathologically confirmed to contain hypercellular tumor. This study applies radiomic profiling to de novo patients with GBM to determine imaging signatures associated with poor prognosis at tumor diagnosis. This tool may be useful for planning surgical resection or radiation treatment margins.

5.
ACS Nano ; 10(4): 4031-8, 2016 04 26.
Article in English | MEDLINE | ID: mdl-27063615

ABSTRACT

Determining the three-dimensional (3D) atomic structure of nanoparticles is critical to identifying the structures controlling their properties. Here, we demonstrate an integrated genetic algorithm (GA) optimization tool that refines the 3D structure of a nanoparticle by matching forward modeling to experimental scanning transmission electron microscopy (STEM) data and simultaneously minimizing the particle energy. We use the tool to create a refined 3D structural model of an experimentally observed ∼6000 atom Au nanoparticle.

6.
Soft Matter ; 2012(8): 2237-2242, 2012 Jan 09.
Article in English | MEDLINE | ID: mdl-22423249

ABSTRACT

Polymer vesicles are being extensively studied to emulate self-assembly in biological systems and also use them in a variety of biological and industrial applications. This study demonstrates a novel strategy to prepare polymer vesicles in a pure aqueous medium by driving the micelle-to-vesicle transition with metallic nanoparticles. We synthesized poly(2-amino-2-hydroxyethyl aspartamide) (PAHA) substituted with octadecyl chains, which could form micelle-like self-aggregates in the aqueous medium and chemically bind with platinum precursors. Then, in situ polymerization of Pt nanoparticles within the PAHA self-aggregates generated polymer vesicles that possess nanoparticles within bilayers, because of the increase of the hydrophilic mass ratio to total mass of PAHA, f (w). This new strategy to prepare polymer vesicles would greatly serve to facilitate the control of self-assembly and ultimately improve the functionality of a wide array of polymer vesicles.

7.
J Neurophysiol ; 102(2): 831-40, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19458146

ABSTRACT

Human contrast sensitivity in low scotopic conditions is regulated according to the deVries-Rose law. Previous cat behavioral data, as well as cat and mice electrophysiological data, have not confirmed this relationship. To resolve this discrepancy at the behavioral level, we compared sensitivity in dim light for cats and humans in parallel experiments using the same visual stimuli and similar behavioral paradigms. Both species had to detect Gabor functions (SD = 1.5 degrees, spatial frequencies from 0 to 4 cpd, temporal frequency 4 Hz) presented 8 degrees to the right or left of a central fixation point over an 8 log-unit range of adaptation levels spanning scotopic vision and extending well into the mesopic range. Cats had 0.74 log unit greater absolute sensitivity than that of humans for spatial frequencies

Subject(s)
Darkness , Night Vision , Vision, Ocular , Adult , Animals , Cats , Female , Humans , Lighting , Linear Models , Photic Stimulation , Psychometrics , Psychophysics , Pupil , Young Adult
8.
J Biomed Opt ; 10(6): 064009, 2005.
Article in English | MEDLINE | ID: mdl-16409074

ABSTRACT

We developed a spectral technique that is independent of the light transport modality (diffusive or nondiffusive) to separate optical changes in scattering and absorption in the cat's brain due to the hemodynamic signal following visual stimulation. We observe changes in oxyhemoglobin and deoxyhemoglobin concentration signals during visual stimulation reminiscent of the functional magnetic resonance imaging (fMRI) blood oxygenation level dependence (BOLD) effect. Repeated measurements at different locations show that the observed changes are local rather than global. We also determine that there is an apparent large decrease in the water concentration and scattering coefficient during stimulation. We model the apparent change in water concentration on the separation of the optical signal from two tissue compartments. One opaque compartment is featureless (black), due to relatively large blood vessels. The other compartment is the rest of the tissue. When blood flow increases due to stimulation, the opaque compartment increases in volume, resulting in an overall decrease of tissue transmission. This increase in baseline absorption changes the apparent relative proportion of all tissue components. However, due to physiological effects, the deoxyhemoglobin is exchanged with oxyhemoglobin resulting in an overall increase in the oxyhemoglobin signal, which is the only component that shows an apparent increase during stimulation.


Subject(s)
Brain/blood supply , Brain/physiology , Evoked Potentials, Visual/physiology , Image Interpretation, Computer-Assisted/methods , Oxygen/metabolism , Spectrophotometry, Infrared/methods , Visual Cortex/physiology , Animals , Brain Mapping/methods , Cats , Cerebrovascular Circulation/physiology , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...