Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 20(10): 1941-1955, 2021 10.
Article in English | MEDLINE | ID: mdl-34253590

ABSTRACT

B-cell maturation antigen (BCMA) is an attractive therapeutic target highly expressed on differentiated plasma cells in multiple myeloma and other B-cell malignancies. GSK2857916 (belantamab mafodotin, BLENREP) is a BCMA-targeting antibody-drug conjugate approved for the treatment of relapsed/refractory multiple myeloma. We report that GSK2857916 induces immunogenic cell death in BCMA-expressing cancer cells and promotes dendritic cell activation in vitro and in vivo GSK2857916 treatment enhances intratumor immune cell infiltration and activation, delays tumor growth, and promotes durable complete regressions in immune-competent mice bearing EL4 lymphoma tumors expressing human BCMA (EL4-hBCMA). Responding mice are immune to rechallenge with EL4 parental and EL4-hBCMA cells, suggesting engagement of an adaptive immune response, immunologic memory, and tumor antigen spreading, which are abrogated upon depletion of endogenous CD8+ T cells. Combinations with OX40/OX86, an immune agonist antibody, significantly enhance antitumor activity and increase durable complete responses, providing a strong rationale for clinical evaluation of GSK2857916 combinations with immunotherapies targeting adaptive immune responses, including T-cell-directed checkpoint modulators.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , B-Cell Maturation Antigen/antagonists & inhibitors , CD8-Positive T-Lymphocytes/immunology , Immunoconjugates/pharmacology , Immunogenic Cell Death , Lymphoma/drug therapy , Multiple Myeloma/drug therapy , Animals , Antibodies, Monoclonal/chemistry , Apoptosis , B-Cell Maturation Antigen/immunology , Cell Proliferation , Female , Humans , Lymphoma/immunology , Lymphoma/metabolism , Lymphoma/pathology , Mice , Mice, Inbred C57BL , Multiple Myeloma/immunology , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
PLoS One ; 13(11): e0206223, 2018.
Article in English | MEDLINE | ID: mdl-30388137

ABSTRACT

Mouse syngeneic tumor models are widely used tools to demonstrate activity of novel anti-cancer immunotherapies. Despite their widespread use, a comprehensive view of their tumor-immune compositions and their relevance to human tumors has only begun to emerge. We propose each model possesses a unique tumor-immune infiltrate profile that can be probed with immunotherapies to inform on anti-tumor mechanisms and treatment strategies in human tumors with similar profiles. In support of this endeavor, we characterized the tumor microenvironment of four commonly used models and demonstrate they encompass a range of immunogenicities, from highly immune infiltrated RENCA tumors to poorly infiltrated B16F10 tumors. Tumor cell lines for each model exhibit different intrinsic factors in vitro that likely influence immune infiltration upon subcutaneous implantation. Similarly, solid tumors in vivo for each model are unique, each enriched in distinct features ranging from pathogen response elements to antigen presentation machinery. As RENCA tumors progress in size, all major T cell populations diminish while myeloid-derived suppressor cells become more enriched, possibly driving immune suppression and tumor progression. In CT26 tumors, CD8 T cells paradoxically increase in density yet are restrained as tumor volume increases. Finally, immunotherapy treatment across these different tumor-immune landscapes segregate into responders and non-responders based on features partially dependent on pre-existing immune infiltrates. Overall, these studies provide an important resource to enhance our translation of syngeneic models to human tumors. Future mechanistic studies paired with this resource will help identify responsive patient populations and improve strategies where immunotherapies are predicted to be ineffective.


Subject(s)
Neoplasms/immunology , Neoplasms/therapy , Tumor Microenvironment , Animals , CD3 Complex/metabolism , Cell Line, Tumor , Cell Proliferation , Chemokines/metabolism , Complement System Proteins/metabolism , Disease Models, Animal , Disease Progression , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Immunotherapy , Ki-67 Antigen/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Myeloid Cells/pathology , Neoplasm Invasiveness , Neoplasms/genetics , Neoplasms/pathology , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...