Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biochim Biophys Acta ; 1505(2-3): 258-70, 2001 Jun 01.
Article in English | MEDLINE | ID: mdl-11334790

ABSTRACT

The potential role of dystrophin-mediated control of systems integrating mitochondria with ATPases was assessed in muscle cells. Mitochondrial distribution and function in skinned cardiac and skeletal muscle fibers from dystrophin-deficient (MDX) and wild-type mice were compared. Laser confocal microscopy revealed disorganized mitochondrial arrays in m. gastrocnemius in MDX mice, whereas the other muscles appeared normal in this group. Irrespective of muscle type, the absence of dystrophin had no effect on the maximal capacity of oxidative phosphorylation, nor on coupling between oxidation and phosphorylation. However, in the myocardium and m. soleus, the coupling of mitochondrial creatine kinase to adenine nucleotide translocase was attenuated as evidenced by the decreased effect of creatine on the Km for ADP in the reactions of oxidative phosphorylation. In m. soleus, a low Km for ADP compared to the wild-type counterpart was found, which implies increased permeability for that nucleotide across the mitochondrial outer membrane. In normal cardiac fibers 35% of the ADP flux generated by ATPases was not accessible to the external pyruvate kinase-phosphoenolpyruvate system, which suggests the compartmentalized (direct) channeling of that fraction of ADP to mitochondria. Compared to control, the direct ADP transfer was increased in MDX ventricles. In conclusion, our data indicate that in slow-twitch muscle cells, the absence of dystrophin is associated with the rearrangement of the intracellular energy and feedback signal transfer systems between mitochondria and ATPases. As the mechanisms mediated by creatine kinases become ineffective, the role of diffusion of adenine nucleotides increases due to the higher permeability of the mitochondrial outer membrane for ADP and enhanced compartmentalization of ADP flux.


Subject(s)
Dystrophin/metabolism , Mitochondria, Heart/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphatases/metabolism , Animals , Cell Respiration , Creatine Kinase/metabolism , Dystrophin/deficiency , Dystrophin/genetics , Female , Mice , Mice, Inbred mdx , Mice, Knockout , Microscopy, Confocal , Mitochondrial ADP, ATP Translocases/metabolism , Muscle, Skeletal/metabolism , Myocardium/metabolism , Oxidative Phosphorylation , Substrate Specificity
3.
Oncogene ; 17(18): 2351-8, 1998 Nov 05.
Article in English | MEDLINE | ID: mdl-9811466

ABSTRACT

Tumour suppressor protein p53 is the most frequent target of mutations occurring in different types of human cancers. Most of these are point mutations clustered in certain 'hot spots'. Because p53 is a tetramer in solution, it can form heterooligomers when both wild-type and mutant forms of p53 are expressed in the same cell. Inactivation of wt p53 by heterooligomerization has been proposed as a mechanism for dominant negative effect of mutant protein. In this paper we show that other mechanisms can also be involved in the inhibition of transcriptional activity of wt p53 by mutant proteins. In addition to suppressing the wt p53 activity, mutant proteins are also able to suppress the activity of p53 protein unable to oligomerize. Either N- or C-terminus of mutant p53 are needed for this activity. The suppression of transcriptional activity described is restricted to p53-dependent promoters and no effect is seen with the promoter not containing p53 binding site. Point mutants also inhibit the growth suppressing activity of monomeric p53. Our data allow to propose the existence of a cofactor specifically needed for p53-dependent transcription. Depletion of this cofactor could be an alternative mechanism of inactivation of wt p53 by its point mutants.


Subject(s)
Point Mutation , Transcription, Genetic , Tumor Suppressor Protein p53/genetics , Binding Sites , Chloramphenicol O-Acetyltransferase/genetics , Chloramphenicol O-Acetyltransferase/metabolism , Colony-Forming Units Assay , Cyclin-Dependent Kinase Inhibitor p21 , Cyclins/metabolism , Genes, Reporter , Humans , Transfection , Tumor Cells, Cultured , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/metabolism
4.
Eur J Biochem ; 241(3): 909-15, 1996 Nov 01.
Article in English | MEDLINE | ID: mdl-8944782

ABSTRACT

The kinetics of in vivo regulation of mitochondrial respiration by ADP was studied in rat heart, slow-twitch skeletal muscle (soleus) and fast-twitch skeletal muscle (gastrocnemius, plantaris, quadriceps and tibialis anterior) by means of saponin-skinned fibres. Mitochondrial respiratory parameters were determined in the absence and presence of creatine (20 mM), and the effect of proteolytic enzymes (trypsin, chymotrypsin or elastase) on these parameters was investigated in detail. The results of these experiments confirm the observation of Veksler et al. [Veksler, V.I., Kuznetsov, A. V., Anflous, K., Mateo, P., van Deursen, J., Wieringa, B. & Ventura-Clapier, R. (1995) J. Biol. Chem. 270, 19921-19929], who studied muscle fibres from normal and transgenic mice, that the kinetics of respiration regulation in muscle cells is tissue specific. We found that in rat cardiac and soleus muscle fibres the apparent K(m) for respiration regulation was 300-400 microM and decreased to 50-80 microM in the presence of creatine. In contrast, in skinned fibres from gastrocnemius, plantaris, tibialis anterior and quadriceps muscles, this value was initially very low, 10-20 microM, i.e. the same as that is in isolated muscle mitochondria, and the effect of creatine was not observable under these experimental conditions. Treatment of the fibres with trypsin, chymotrypsin or elastase (0.125 micrograms/ml) for 15 min decreased the apparent K(m) for ADP in cardiac and soleus muscle fibres to 40-98 microM without significant alteration of Vmax or the intactness of outer mitochondrial membrane, as assessed by the cytochrome c test. In fibres from gastrocnemius, trypsin increased the apparent K(m) for ADP transiently. The effects of trypsin and chymotrypsin were studied in detail and found to be concentration dependent and time dependent. The effects were characterised by saturation phenomenon with respect to the proteolytic enzyme concentration, saturation being observed above 1 microM enzyme. These results are taken to show that in cardiac and slow-twitch skeletal muscle, the permeability of the outer mitochondrial membrane to adenine nucleotides is low and controlled by a cytoplasmic protein that is sensitive to trypsin and chymotrypsin. This protein may participate in feedback signal transduction by a mechanism of vectorial-ligand conduction. This protein factor is not expressed in fast-twitch skeletal muscle, in which cellular mechanism of regulation of respiration is probably very different from that of slow-twitch muscles.


Subject(s)
Adenosine Diphosphate/pharmacology , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Oxygen Consumption/drug effects , Adenosine Triphosphate/pharmacology , Animals , Creatine/pharmacology , Heart/drug effects , Kinetics , Mitochondria/metabolism , Muscle Fibers, Fast-Twitch/drug effects , Muscle Fibers, Fast-Twitch/ultrastructure , Muscle Fibers, Slow-Twitch/drug effects , Muscle Fibers, Slow-Twitch/ultrastructure , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/ultrastructure , Myocardium/metabolism , Myocardium/ultrastructure , Rats , Rats, Wistar , Serine Endopeptidases/pharmacology , Species Specificity , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...