Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 9(33): 12096-12109, 2017 Aug 24.
Article in English | MEDLINE | ID: mdl-28799610

ABSTRACT

Angiogenesis is a dynamic process fundamental to the development of solid tumors. Epidermal growth factor-like domain 7 (EGFL7) is a protein whose expression is restricted to endothelial cells undergoing active remodeling that has emerged as a key mediator of this process. EGFL7 expression is associated with poor outcome in several cancers, making it a promising target for imaging or therapeutic strategies. Here, EGFL7 is explored as a molecular target for active neovascularization. Using a combinatorial peptide screening approach, we describe the discovery and characterization of a novel high affinity EGFL7-binding peptide, E7p72, that specifically targets human endothelial cells. Viral nanoparticles decorated with E7p72 peptides specifically target tumor-associated neovasculature with high specificity as assessed by intravital imaging. This work highlights the value of EGFL7 as a target for angiogenic vessels and opens the door for novel targeted therapeutic approaches.

2.
Pharm Dev Technol ; 19(8): 999-1004, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24093888

ABSTRACT

Paclitaxel was loaded into licensed parenteral nutrition nanoemulsions (Clinoleic® and Intralipid®) using bath sonication, and the stability of the formulations was investigated following storage for two weeks at room temperature or at 4 °C. In general, Clinoleic droplets were smaller than Intralipid droplets, being around 255 and 285 nm, respectively, for blank and freshly loaded emulsions. Regardless of storage temperature, the Clinoleic exhibited a very slight or no increase in droplet size upon storage, whilst the droplet size of the Intralipid emulsion increased significantly. The droplet size of both emulsions was minimally affected by paclitaxel concentration within the range of 0, 1, 3 and 6 mg/ml. The pH of both emulsions markedly decreased upon storage at room temperature, which was possibly attributed to the production of fatty acids resulting from phospholipid hydrolysis. However, at 4 °C, the pH of Clinoleic emulsion was unaffected by storage or paclitaxel concentration while the Intralipid emulsion demonstrated a trend for pH reduction. Both nanoemulsions had a negative zeta potential, with the Clinoleic formulations having the highest charge, possibly explaining the better size stability of this emulsion. Overall, this study has shown that paclitaxel was successfully loaded into clinically licensed parenteral emulsions and that Clinoleic showed greater stability than the Intralipid.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Fat Emulsions, Intravenous/chemistry , Paclitaxel/administration & dosage , Phospholipids/chemistry , Plant Oils/chemistry , Soybean Oil/chemistry , Drug Stability , Drug Storage , Emulsions/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...