Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Psychiatry ; 7(6): 542-59, 2002.
Article in English | MEDLINE | ID: mdl-12140777

ABSTRACT

From our linkage study of Irish families with a high density of schizophrenia, we have previously reported evidence for susceptibility genes in regions 5q21-31, 6p24-21, 8p22-21, and 10p15-p11. In this report, we describe the cumulative results from independent genome scans of three a priori random subsets of 90 families each, and from multipoint analysis of all 270 families in ten regions. Of these ten regions, three (13q32, 18p11-q11, and 18q22-23) did not generate scores above the empirical baseline pairwise scan results, and one (6q13-26) generated a weak signal. Six other regions produced more positive pairwise and multipoint results. They showed the following maximum multipoint H-LOD (heterogeneity LOD) and NPL scores: 2p14-13: 0.89 (P = 0.06) and 2.08 (P = 0.02), 4q24-32: 1.84 (P = 0.007) and 1.67 (P = 0.03), 5q21-31: 2.88 (P= 0.0007), and 2.65 (P = 0.002), 6p25-24: 2.13 (P = 0.005) and 3.59 (P = 0.0005), 6p23: 2.42 (P = 0.001) and 3.07 (P = 0.001), 8p22-21: 1.57 (P = 0.01) and 2.56 (P = 0.005), 10p15-11: 2.04 (P = 0.005) and 1.78 (P = 0.03). The degree of 'internal replication' across subsets differed, with 5q, 6p, and 8p being most consistent and 2p and 10p being least consistent. On 6p, the data suggested the presence of two susceptibility genes, in 6p25-24 and 6p23-22. Very few families were positive on more than one region, and little correlation between regions was evident, suggesting substantial locus heterogeneity. The levels of statistical significance were modest, as expected from loci contributing to complex traits. However, our internal replications, when considered along with the positive results obtained in multiple other samples, suggests that most of these six regions are likely to contain genes that influence liability to schizophrenia.


Subject(s)
Chromosome Mapping , Genetic Predisposition to Disease/genetics , Genome, Human , Schizophrenia/genetics , Family , Female , Genetic Markers , Genotype , Humans , Ireland , Male , Models, Genetic , White People/genetics
2.
Mol Psychiatry ; 4(2): 129-44, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10208445

ABSTRACT

Cigarette smoking is associated with considerable morbidity, mortality, and public health costs. Genetic factors influence both smoking initiation and nicotine dependence, but none of the genes involved have been identified. A genome scan using 451 markers was conducted to identify chromosomal regions linked to nicotine dependence in a collection of 130 families containing 343 genotyped individuals (308 nicotine-dependent) from Christchurch, New Zealand. By pairwise analysis, the best result was with marker D2S1326 which gave a lod score under heterogeneity (H-LOD) of 2.63 (P=0.0012) and a nonparametric linkage (NPL, Zall) score of 2.65 (P=0.0011). To identify regions that warranted further study, rather than comparing the pairwise scores from the scan to theoretical thresholds, we compared them to an empirical baseline, found here to be H-LOD scores of 0.5 and Zall scores of 1.0. We also found a number of large (31-88 cM) regions where many (8-16) consecutive markers yielded small but positive Zall scores. Selected regions of chromosomes 2, 4, 10, 16, 17 and 18 were investigated further by additional genotyping of the Christchurch sample and an independent sample from Richmond, Virginia (91 families with 264 genotyped individuals, 211 nicotine-dependent). Multipoint nonparametric analysis showed the following maximums for the Christchurch sample: Chr. 2 (Zlr=2.61, P=0.005), Chr. 4 (Zlr=1.36, P=0.09), Chr. 10 (Zlr=2.43, P=0.008), Chr. 16 (Zlr=0.85, P=0.19), Chr. 17 (Zlr=1.64, P=0.05), Chr. 18 (Zlr=1.54, P=0.06). Analysis of the Richmond sample showed the following maximums: Chr. 2 (Zlr=1.00, P=0.15), Chr. 4 (Zlr=0.39, P=0.34), Chr. 10 (Zlr=1.21, P=0.11), Chr. 16 (Zlr=1.11, P=0.13), Chr. 17 (Zlr=1.60, P=0.05), Chr. 18 (Zlr=1.33, P=0.09). It is probable that the small samples used here provided only limited power to detect linkage. It may have been difficult therefore to detect genes of small effect, or those that are influencing risk in only a small proportion of the families. When simply judged against the usual standards of linkage significance, none of the individual regions yielded strong evidence in either sample. Some or all of the most positive results in the genome scan of the Christchurch sample, therefore, could be due to chance. However, the presence in the Christchurch scan of multiple large regions containing many consecutive positive markers, coupled with the relatively positive results in these same regions in the Richmond sample, suggests that some of these regions may contain genes influencing nicotine dependence and therefore deserve further study.


Subject(s)
Chromosome Mapping , Genome, Human , Tobacco Use Disorder/genetics , Adult , Chromosomes, Human, Pair 10 , Chromosomes, Human, Pair 16 , Chromosomes, Human, Pair 17 , Chromosomes, Human, Pair 18 , Chromosomes, Human, Pair 2 , Chromosomes, Human, Pair 4 , Female , Genetic Markers , Genetic Predisposition to Disease , Genotype , Humans , Lod Score , Male , New Zealand , Nicotine , Nuclear Family
3.
J Biol Chem ; 271(39): 23828-35, 1996 Sep 27.
Article in English | MEDLINE | ID: mdl-8798612

ABSTRACT

Scorpion and sea anemone venoms contain several polypeptides that delay inactivation of voltage-sensitive sodium channels via interaction with a common site. In this report, we target exposed hydrophobic residues at positions 33 and 45 of anthopleurin B (ApB) by polymerase chain reaction mutagenesis to ascertain their contribution to toxin activity. Nonconservative replacements are not permitted at position 33, indicating that Trp-33 may play an important structural role. Strikingly, the relatively conservative substitution of Trp-33 by phenylalanine results in major reductions in binding affinity for both the cardiac and neuronal channel isoforms as measured by ion flux, whereas substitution with tyrosine is tolerated and exhibits near wild-type affinities, suggesting that either the ability to form a hydrogen bond or the amphiphilic nature of the side chain are important at this position. Electrophysiological analysis of W33F indicates that its diminished affinity is primarily due to a decreased association rate. Analysis of a panel of mutants at Trp-45 shows only modest changes in apparent binding affinity for both channel isoforms but significant effects on Vmax. In neuronal channels, the maximal levels of uptake for W45A/S/F are about 50% those seen with ApB. This effect is also observed for W45A and W45S in the cardiac model, wherein W45F is normal. These results suggest that a hydrophobic contact is involved in toxin-induced stabilization of the open conformation of the cardiac sodium channel. We conclude that Trp-33 contributes significantly to apparent affinity, whereas Trp-45 does not appear to affect binding per se. Furthermore, W33F is the first ApB mutant that displays a significantly altered association rate and may prove to be a useful probe of the channel binding site.


Subject(s)
Cardiotonic Agents/chemistry , Peptides/chemistry , Sodium Channel Blockers , Tryptophan/chemistry , Animals , Intercellular Signaling Peptides and Proteins , Ion Channel Gating/drug effects , Kinetics , Mice , Models, Molecular , Recombinant Proteins , Solubility
4.
J Biol Chem ; 271(16): 9422-8, 1996 Apr 19.
Article in English | MEDLINE | ID: mdl-8621610

ABSTRACT

Anthopleurin B is a potent anemone toxin that binds with nanomolar affinity to the cardiac and neuronal isoforms of the voltage-gated sodium channel. A cationic cluster that includes Arg-12, Arg-14 and Lys-49 has been shown previously to be important in this interaction. In this study, we have used site-directed mutagenesis to determine the contribution to activity of two aliphatic residues, Leu-18 and Ile-43, that have previously been experimentally inaccessible. Leu-18, a residue proximal to the cationic cluster, plays a critical role in defining the high affinity of the toxin. In ion flux studies, this is exemplified by the several hundredfold loss in affinity (231-672-fold) observed for both L18A and L18V toxins on either isoform of the sodium channel. When analyzed electrophysiologically, L18A, the most severely compromised mutant, also displays a substantial loss in affinity (34-fold and 328-fold) for the neuronal and cardiac isoforms. This difference in affinities may reflect an increased preference of the L18A mutant for the closed state of the neuronal channel. In contrast, Ile-43, a residue distal to the cationic cluster, plays at most a very modest role in affinity toward both isoforms of the sodium channel. Only conservative substitutions are tolerated at this position, implying that it may contribute to an important structural component. Our results indicate that Leu-18 is the most significant single contributor to the high affinity of Anthopleurin B identified to date. These results have extended the binding site beyond the cationic cluster to include Leu-18 and broadened our emphasis from the basic residues to include the crucial role of hydrophobic residues in toxin-receptor interactions.


Subject(s)
Leucine , Peptides/metabolism , Sodium Channels/physiology , Amino Acid Sequence , Animals , Arginine , Base Sequence , Binding Sites , Cell Line , DNA Primers , Genes, Synthetic , Intercellular Signaling Peptides and Proteins , Isoleucine , Kinetics , Membrane Potentials/drug effects , Mice , Molecular Sequence Data , Mutagenesis, Site-Directed , Myocardium/metabolism , Neuroblastoma , Neurons/metabolism , Polymerase Chain Reaction , Rats , Recombinant Proteins/biosynthesis , Recombinant Proteins/drug effects , Recombinant Proteins/metabolism , Sea Anemones , Sodium Channels/biosynthesis , Sodium Channels/drug effects , Structure-Activity Relationship , Transfection , Tumor Cells, Cultured , Veratridine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...