Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Mol Metab ; 86: 101973, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914291

ABSTRACT

BACKGROUND: Type 1 diabetes (T1D) is a complex multi-system disease which arises from both environmental and genetic factors, resulting in the destruction of insulin-producing pancreatic beta cells. Over the past two decades, human genetic studies have provided new insight into the etiology of T1D, including an appreciation for the role of beta cells in their own demise. SCOPE OF REVIEW: Here, we outline models supported by human genetic data for the role of beta cell dysfunction and death in T1D. We highlight the importance of strong evidence linking T1D genetic associations to bona fide candidate genes for mechanistic and therapeutic consideration. To guide rigorous interpretation of genetic associations, we describe molecular profiling approaches, genomic resources, and disease models that may be used to construct variant-to-gene links and to investigate candidate genes and their role in T1D. MAJOR CONCLUSIONS: We profile advances in understanding the genetic causes of beta cell dysfunction and death at individual T1D risk loci. We discuss how genetic risk prediction models can be used to address disease heterogeneity. Further, we present areas where investment will be critical for the future use of genetics to address open questions in the development of new treatment and prevention strategies for T1D.

3.
Sci Adv ; 10(10): eadl1122, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38446892

ABSTRACT

Coxsackievirus B (CVB) infection of pancreatic ß cells is associated with ß cell autoimmunity and type 1 diabetes. We investigated how CVB affects human ß cells and anti-CVB T cell responses. ß cells were efficiently infected by CVB in vitro, down-regulated human leukocyte antigen (HLA) class I, and presented few, selected HLA-bound viral peptides. Circulating CD8+ T cells from CVB-seropositive individuals recognized a fraction of these peptides; only another subfraction was targeted by effector/memory T cells that expressed exhaustion marker PD-1. T cells recognizing a CVB epitope cross-reacted with ß cell antigen GAD. Infected ß cells, which formed filopodia to propagate infection, were more efficiently killed by CVB than by CVB-reactive T cells. Our in vitro and ex vivo data highlight limited CD8+ T cell responses to CVB, supporting the rationale for CVB vaccination trials for type 1 diabetes prevention. CD8+ T cells recognizing structural and nonstructural CVB epitopes provide biomarkers to differentially follow response to infection and vaccination.


Subject(s)
Coxsackievirus Infections , Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Humans , CD8-Positive T-Lymphocytes , Antibodies , Epitopes , Peptides , Antiviral Agents
4.
Diabetes ; 73(4): 611-617, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37967313

ABSTRACT

More than 30% of patients with type 1 diabetes develop diabetic kidney disease (DKD), which significantly increases mortality risk. The Diabetes Control and Complications Trial (DCCT) and follow-up study, Epidemiology of Diabetes Interventions and Complications (EDIC), established that glycemic control measured by HbA1c predicts DKD risk. However, the continued high incidence of DKD reinforces the urgent need for additional biomarkers to supplement HbA1c. Here, we assessed biomarkers induced by methylglyoxal (MG), a metabolic by-product that forms covalent adducts on DNA, RNA, and proteins, called MG adducts. Urinary MG adducts were measured in samples from patients with type 1 diabetes enrolled in DCCT/EDIC who did (case patients; n = 90) or did not (control patients; n = 117) develop DKD. Univariate and multivariable analyses revealed that measurements of MG adducts independently predict DKD before established DKD biomarkers such as glomerular filtration rate and albumin excretion rate. Elevated levels of MG adducts bestowed the greatest risk of developing DKD in a multivariable model that included HbA1c and other clinical covariates. Our work establishes a novel class of biomarkers to predict DKD risk and suggests that inclusion of MG adducts may be a valuable tool to improve existing predictors of complications like DKD prior to overt disease, and to aid in identifying at-risk individuals and personalized risk management.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Nephropathies , Humans , Diabetes Mellitus, Type 1/complications , Diabetic Nephropathies/metabolism , Pyruvaldehyde , Follow-Up Studies , Prognosis , Glycated Hemoglobin , Biomarkers/metabolism , Glomerular Filtration Rate
5.
bioRxiv ; 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37662376

ABSTRACT

Coxsackievirus B (CVB) infection of pancreatic ß cells is associated with ß-cell autoimmunity. We investigated how CVB impacts human ß cells and anti-CVB T-cell responses. ß cells were efficiently infected by CVB in vitro, downregulated HLA Class I and presented few, selected HLA-bound viral peptides. Circulating CD8+ T cells from CVB-seropositive individuals recognized only a fraction of these peptides, and only another sub-fraction was targeted by effector/memory T cells that expressed the exhaustion marker PD-1. T cells recognizing a CVB epitope cross-reacted with the ß-cell antigen GAD. Infected ß cells, which formed filopodia to propagate infection, were more efficiently killed by CVB than by CVB-reactive T cells. Thus, our in-vitro and ex-vivo data highlight limited T-cell responses to CVB, supporting the rationale for CVB vaccination trials for type 1 diabetes prevention. CD8+ T cells recognizing structural and non-structural CVB epitopes provide biomarkers to differentially follow response to infection and vaccination.

6.
Sci Data ; 10(1): 323, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37237059

ABSTRACT

The Network for Pancreatic Organ donors with Diabetes (nPOD) is the largest biorepository of human pancreata and associated immune organs from donors with type 1 diabetes (T1D), maturity-onset diabetes of the young (MODY), cystic fibrosis-related diabetes (CFRD), type 2 diabetes (T2D), gestational diabetes, islet autoantibody positivity (AAb+), and without diabetes. nPOD recovers, processes, analyzes, and distributes high-quality biospecimens, collected using optimized standard operating procedures, and associated de-identified data/metadata to researchers around the world. Herein describes the release of high-parameter genotyping data from this collection. 372 donors were genotyped using a custom precision medicine single nucleotide polymorphism (SNP) microarray. Data were technically validated using published algorithms to evaluate donor relatedness, ancestry, imputed HLA, and T1D genetic risk score. Additionally, 207 donors were assessed for rare known and novel coding region variants via whole exome sequencing (WES). These data are publicly-available to enable genotype-specific sample requests and the study of novel genotype:phenotype associations, aiding in the mission of nPOD to enhance understanding of diabetes pathogenesis to promote the development of novel therapies.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Tissue Donors , Humans , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Genomics , Pancreas
7.
PLoS One ; 18(1): e0280872, 2023.
Article in English | MEDLINE | ID: mdl-36701305

ABSTRACT

Type 1 diabetes patients carrying a 'protective' insulin gene (INS) variant present a disease endotype with reduced insulin antibody titers, preserved beta cell function and improved glycemic control. We tested whether this protective INS variant associated with lowered risk for development of proliferative diabetic retinopathy (PDR) and diabetic kidney disease (DKD) as long-term diabetic complications. Insulin gene polymorphisms were evaluated in 1,363 type 1 diabetes patients participating in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study that compared intensive versus conventional insulin therapy in relation with development of PDR and DKD with a follow-up of over two decades. PDR and DKD were absent in type 1 diabetes patients carrying the protective INS variant and receiving intensive insulin therapy (the current standard of clinical care) 1-5 years from their diagnosis (n = 67; mean post-diagnosis follow up of 20.4 ± 1.6 years), versus 11 of 258 patients (4.3%) lacking this variant (20.4 ± 1.8 years follow up). In the secondary intervention group of the intensive therapy arm (1-15 years of disease), PDR was significantly less frequent in carriers of the protective INS variant than those without it (4 of 83 [4.8%] vs. 31 of 260 [11.9%]; p = 0.032; 26.1 ± 3.9 and 26.3 ± 4.1 years follow-up, respectively), whereas DKD frequencies were no different between those with or without this variant (5 of 83 [6.0%] vs. 11 of 260 [4.2%]). Carrying a copy of this protective INS variant further reduces the risk of diabetic complications achieved by intensive insulin therapy and marks a disease endotype with superior glycemic control, increased and extended beta cell function, and prevention of DKD and PDR.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Retinopathy , Humans , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/genetics , Insulin/therapeutic use , Blood Glucose/metabolism , Glycated Hemoglobin , Diabetic Retinopathy/diagnosis , Insulin, Regular, Human/therapeutic use
8.
Front Immunol ; 13: 1054968, 2022.
Article in English | MEDLINE | ID: mdl-36505460

ABSTRACT

Introduction: Restoration of immune tolerance may halt progression of autoimmune diseases. Tolerogenic dendritic cells (tolDC) inhibit antigen-specific proinflammatory T-cells, generate antigen-specific regulatory T-cells and promote IL-10 production in-vitro, providing an appealing immunotherapy to intervene in autoimmune disease progression. Methods: A placebo-controlled, dose escalation phase 1 clinical trial in nine adult patients with long-standing type 1 diabetes (T1D) demonstrated the safety and feasibility of two (prime-boost) vaccinations with tolDC pulsed with a proinsulin peptide. Immunoregulatory effects were monitored by antigen-specific T-cell assays and flow and mass cytometry. Results: The tolDC vaccine induced a profound and durable decline in pre-existing autoimmune responses to the vaccine peptide up to 3 years after therapy and temporary decline in CD4 and CD8+ T-cell responses to other islet autoantigens. While major leukocyte subsets remained stable, ICOS+CCR4+TIGIT+ Tregs and CD103+ tissue-resident and CCR6+ effector memory CD4+ T-cells increased in response to the first tolDC injection, the latter declining thereafter below baseline levels. Discussion: Our data identify immune correlates of mechanistic efficacy of intradermally injected tolDC reducing proinsulin autoimmunity in T1D.


Subject(s)
Autoimmune Diseases , Diabetes Mellitus, Type 1 , Adult , Humans , Dendritic Cells , Diabetes Mellitus, Type 1/therapy , Immune Tolerance , Proinsulin
9.
Nat Commun ; 13(1): 2020, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440614

ABSTRACT

Generation of surrogate cells with stable functional identities is crucial for developing cell-based therapies. Efforts to produce insulin-secreting replacement cells to treat diabetes require reliable tools to assess islet cellular identity. Here, we conduct a thorough single-cell transcriptomics meta-analysis to identify robustly expressed markers used to build genesets describing the identity of human α-, ß-, γ- and δ-cells. These genesets define islet cellular identities better than previously published genesets. We show their efficacy to outline cell identity changes and unravel some of their underlying genetic mechanisms, whether during embryonic pancreas development or in experimental setups aiming at developing glucose-responsive insulin-secreting cells, such as pluripotent stem-cell differentiation or in adult islet cell reprogramming protocols. These islet cell type-specific genesets represent valuable tools that accurately benchmark gain and loss in islet cell identity traits.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , Pluripotent Stem Cells , Cell Differentiation/genetics , Humans , Insulin/genetics
11.
PLoS One ; 16(10): e0258434, 2021.
Article in English | MEDLINE | ID: mdl-34705837

ABSTRACT

We investigated the effect of chronic marijuana use, defined as 4 times weekly for more than 3 years, on human pancreatic islets. Pancreata from deceased donors who chronically used marijuana were compared to those from age, sex and ethnicity matched non-users. The islets from marijuana-users displayed reduced insulin secretion as compared to islets from non-users upon stimulation with high glucose (AUC, 3.41 ± 0.62 versus 5.14 ±0.47, p<0.05) and high glucose plus KCl (AUC, 4.48 ± 0.41 versus 7.69 ± 0.58, p<0.001). When human islets from chronic marijuana-users were transplanted into diabetic mice, the mean reversal rate of diabetes was 35% versus 77% in animals receiving islets from non-users (p<0.01). Immunofluorescent staining for cannabinoid receptor type 1 (CB1R) was shown to be colocalized with insulin and enhanced significantly in beta cells from marijuana-users vs. non-users (CB1R intensity/islet area, 14.95 ± 2.71 vs. 3.23 ± 0.87, p<0.001). In contrast, CB1R expression was not co-localized with glucagon or somatostatin. Furthermore, isolated islets from chronic marijuana-users appeared hypertrophic. In conclusion, excessive marijuana use affects islet endocrine phenotype and function in vitro and in vivo. Given the increasing use of marijuana, our results underline the importance of including lifestyle when evaluating human islets for transplantation or research.


Subject(s)
Cannabis , Animals , Diabetes Mellitus, Experimental , Mice
13.
Am J Pathol ; 191(3): 454-462, 2021 03.
Article in English | MEDLINE | ID: mdl-33307036

ABSTRACT

Emerging data suggest that type 1 diabetes affects not only the ß-cell-containing islets of Langerhans, but also the surrounding exocrine compartment. Using digital pathology, machine learning algorithms were applied to high-resolution, whole-slide images of human pancreata to determine whether the tissue composition in individuals with or at risk for type 1 diabetes differs from those without diabetes. Transplant-grade pancreata from organ donors were evaluated from 16 nondiabetic autoantibody-negative controls, 8 nondiabetic autoantibody-positive subjects with increased type 1 diabetes risk, and 19 persons with type 1 diabetes (0 to 12 years' duration). HALO image analysis algorithms were implemented to compare architecture of the main pancreatic duct as well as cell size, density, and area of acinar, endocrine, ductal, and other nonendocrine, nonexocrine tissues. Type 1 diabetes was found to affect exocrine area, acinar cell density, and size, whereas the type of difference correlated with the presence or absence of insulin-positive cells remaining in the pancreas. These changes were not observed before disease onset, as indicated by modeling cross-sectional data from pancreata of autoantibody-positive subjects and those diagnosed with type 1 diabetes. These data provide novel insights into anatomic differences in type 1 diabetes pancreata and demonstrate that machine learning can be adapted for the evaluation of disease processes from cross-sectional data sets.


Subject(s)
Algorithms , Autoantibodies/immunology , Diabetes Mellitus, Type 1/pathology , Image Processing, Computer-Assisted/methods , Machine Learning , Pancreas/pathology , Adolescent , Autoantibodies/blood , Case-Control Studies , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Female , Humans , Insulin/analysis , Pancreas/immunology , Pancreas/metabolism , Tissue Donors
14.
Nat Metab ; 2(8): 744-762, 2020 08.
Article in English | MEDLINE | ID: mdl-32694834

ABSTRACT

Metabolic memory, the persistent benefits of early glycaemic control on preventing and/or delaying the development of diabetic complications, has been observed in the Diabetes Control and Complications Trial (DCCT) and in the Epidemiology of Diabetes Interventions and Complications (EDIC) follow-up study, but the underlying mechanisms remain unclear. Here, we show the involvement of epigenetic DNA methylation (DNAme) in metabolic memory by examining its associations with preceding glycaemic history, and with subsequent development of complications over an 18-yr period in the blood DNA of 499 randomly selected DCCT participants with type 1 diabetes who are also followed up in EDIC. We demonstrate the associations between DNAme near the closeout of DCCT and mean HbA1c during DCCT (mean-DCCT HbA1c) at 186 cytosine-guanine dinucleotides (CpGs) (FDR < 15%, including 43 at FDR < 5%), many of which were located in genes related to complications. Exploration studies into biological function reveal that these CpGs are enriched in binding sites for the C/EBP transcription factor, as well as enhancer/transcription regions in blood cells and haematopoietic stem cells, and open chromatin states in myeloid cells. Mediation analyses show that, remarkably, several CpGs in combination explain 68-97% of the association of mean-DCCT HbA1c with the risk of complications during EDIC. In summary, DNAme at key CpGs appears to mediate the association between hyperglycaemia and complications in metabolic memory, through modifying enhancer activity at myeloid and other cells.


Subject(s)
DNA Methylation , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/genetics , Glycated Hemoglobin/genetics , Glycated Hemoglobin/metabolism , Adult , Binding Sites , Blood Cells/metabolism , Chromatin/metabolism , Cohort Studies , CpG Islands , Diabetes Mellitus, Type 1/metabolism , Epigenesis, Genetic , Female , Hematopoietic Stem Cells , Humans , Hyperglycemia/metabolism , Male , Myeloid Cells/metabolism , Transcription Factors
15.
Diabetologia ; 61(4): 954-958, 2018 04.
Article in English | MEDLINE | ID: mdl-29128936

ABSTRACT

AIMS/HYPOTHESIS: Diabetes research studies routinely rely upon the use of tissue samples from human organ donors. It remains unclear whether the length of hospital stay prior to organ donation affects the presence of cells infiltrating the pancreas or the frequency of replicating beta cells. METHODS: To address this, 39 organ donors without diabetes were matched for age, sex, BMI and ethnicity in groups of three. Within each group, donors varied by length of hospital stay immediately prior to organ donation (<3 days, 3 to <6 days, or ≥6 days). Serial sections from tissue blocks in the pancreas head, body and tail regions were immunohistochemically double stained for insulin and CD45, CD68, or Ki67. Slides were electronically scanned and quantitatively analysed for cell positivity. RESULTS: No differences in CD45+, CD68+, insulin+, Ki67+ or Ki67+/insulin+ cell frequencies were found when donors were grouped according to duration of hospital stay. Likewise, no interactions were observed between hospitalisation group and pancreas region, age, or both; however, with Ki67 staining, cell frequencies were greater in the body vs the tail region of the pancreas (∆ 0.65 [unadjusted 95% CI 0.25, 1.04]; p = 0.002) from donors <12 year of age. Interestingly, frequencies were less in the body vs tail region of the pancreas for both CD45+ cells (∆ -0.91 [95% CI -1.71, -0.10]; p = 0.024) and insulin+ cells (∆ -0.72 [95% CI -1.10, -0.34]; p < 0.001). CONCLUSIONS/INTERPRETATION: This study suggests that immune or replicating beta cell frequencies are not affected by the length of hospital stay prior to donor death in pancreases used for research. DATA AVAILABILITY: All referenced macros (adopted and developed), calculations, programming code and numerical dataset files (including individual-level donor data) are freely available on GitHub through Zenodo at https://doi.org/10.5281/zenodo.1034422.


Subject(s)
Hospitalization , Length of Stay , Pancreas Transplantation , Pancreas/pathology , Adolescent , Body Mass Index , Child , Death , Diabetes Mellitus/pathology , Female , Humans , Immunohistochemistry , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Male , Tissue Donors , Tissue and Organ Procurement , Treatment Outcome , Young Adult
17.
Cell Stem Cell ; 21(1): 78-90.e6, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28686870

ABSTRACT

Several cell populations have been reported to possess intestinal stem cell (ISC) activity during homeostasis and injury-induced regeneration. Here, we explored inter-relationships between putative mouse ISC populations by comparative RNA-sequencing (RNA-seq). The transcriptomes of multiple cycling ISC populations closely resembled Lgr5+ ISCs, the most well-defined ISC pool, but Bmi1-GFP+ cells were distinct and enriched for enteroendocrine (EE) markers, including Prox1. Prox1-GFP+ cells exhibited sustained clonogenic growth in vitro, and lineage-tracing of Prox1+ cells revealed long-lived clones during homeostasis and after radiation-induced injury in vivo. Single-cell mRNA-seq revealed two subsets of Prox1-GFP+ cells, one of which resembled mature EE cells while the other displayed low-level EE gene expression but co-expressed tuft cell markers, Lgr5 and Ascl2, reminiscent of label-retaining secretory progenitors. Our data suggest that the EE lineage, including mature EE cells, comprises a reservoir of homeostatic and injury-inducible ISCs, extending our understanding of cellular plasticity and stemness.


Subject(s)
Antigens, Differentiation/metabolism , Enteroendocrine Cells/metabolism , Intestinal Mucosa/injuries , Intestinal Mucosa/metabolism , Jejunum/injuries , Jejunum/metabolism , Stem Cells/metabolism , Animals , Antigens, Differentiation/genetics , Enteroendocrine Cells/pathology , Gene Expression Regulation , Intestinal Mucosa/pathology , Jejunum/pathology , Mice , Mice, Transgenic , Stem Cells/pathology
20.
Pancreas ; 46(2): 252-259, 2017 02.
Article in English | MEDLINE | ID: mdl-27984510

ABSTRACT

OBJECTIVES: Attaining high-quality RNA from the tissues or organs of deceased donors used for research can be challenging due to physiological and logistical considerations. In this investigation, METHODS: RNA Integrity Number (RIN) was determined in pancreatic samples from 236 organ donors and used to define high (≥6.5) and low (≤4.5) quality RNAs. Logistic regression was used to evaluate the potential effects of novel or established organ and donor factors on RIN. RESULTS: Univariate analysis revealed donor cause of death (odds ratio [OR], 0.35; 95% confidence interval [CI], 0.15-0.77; P = 0.01), prolonged tissue storage before RNA extraction (OR, 0.65; 95% CI, 0.52-0.79; P < 0.01), pancreas region sampled (multiple comparisons, P < 0.01), and sample type (OR, 0.32; 95% CI, 0.15-0.67; P < 0.01) negatively influenced outcome. Conversely, duration of final hospitalization (OR, 3.95; 95% CI, 1.59-10.37; P < 0.01) and sample collection protocol (OR, 8.48; 95% CI, 3.96-19.30; P < 0.01) positively impacted outcome. Islet RNA obtained via laser capture microdissection improved RIN when compared with total pancreatic RNA from the same donor (ΔRIN = 1.3; 95% CI, 0.6-2.0; P < 0.01). CONCLUSIONS: A multivariable model demonstrates that autopsy-free and biopsy-free human pancreata received, processed, and preserved at a single center, using optimized procedures, from organ donors dying of anoxia with normal lipase levels increase the odds of obtaining high-quality RNA.


Subject(s)
Pancreas/metabolism , RNA Stability , RNA/metabolism , Tissue Donors , Adolescent , Adult , Autopsy , Female , Humans , Logistic Models , Male , Middle Aged , Multivariate Analysis , RNA/genetics , RNA/isolation & purification , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...