Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 99(5)2023 04 07.
Article in English | MEDLINE | ID: mdl-37019822

ABSTRACT

Retama dasycarpa is an endemic Retama species native to the cold semi-arid bioclimates of the High Atlas Mountains in Morocco. In this work, we analyzed the diversity of the microsymbionts nodulating this plant and their different phenotypic and symbiotic characteristics. Phylogenetic analysis of the 16S rRNA gene revealed that the tested isolates clustered in the Bradyrhizobium genus. Multilocus sequence analyses of four housekeeping genes (recA, gyrB, glnII and atpD) for 12 selected strains grouped them into four clusters close to B. lupini USDA 3051T, B. frederickii CNPSo 3446T, B. valentinum LmjM3T and B. retamae Ro19T. The individual phylogenies of these core genes and the symbiotic genes nodC, nodA and nifH were congruent. These isolates showed a broad host range, being able to nodulate different legume hosts, such as R. sphaerocarpa, R. monosperma, Lupinus luteus, Cytisus grandiflorus andChamaecytisus albidus, but not Phaseolus vulgaris or Glycine max. They all had a similar metabolic capacity, using the majority of the carbohydrates and amino acids tested as sole sources of carbon and nitrogen. Furthermore, out of the 12 selected strains, some displayed plant growth-promoting features, with six of them solubilizing phosphate and three of them producing siderophores. The present work provides, for the first time, a detailed description about the microsymbionts associated with the endemic legume R. dasycarpa.


Subject(s)
Bradyrhizobium , Fabaceae , Lupinus , Root Nodules, Plant , Phylogeny , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , DNA, Bacterial/chemistry , Sequence Analysis, DNA , Symbiosis/genetics
2.
Front Plant Sci ; 14: 1250728, 2023.
Article in English | MEDLINE | ID: mdl-38169825

ABSTRACT

Introduction: Increasing global warming has made heat stress a serious threat to crop productivity and global food security in recent years. One of the most promising solutions to address this issue is developing heat-stress-tolerant plants. Hence, a thorough understanding of heat stress response mechanisms, particularly molecular ones, is crucial. Methods: Although numerous studies have used microarray expression profiling technology to explore this area, these experiments often face limitations, leading to inconsistent results. To overcome these limitations, a random effects meta-analysis was employed using advanced statistical methods. A meta-analysis of 16 microarray datasets related to heat stress response in Arabidopsis thaliana was conducted. Results: The analysis revealed 1,972 significant differentially expressed genes between control and heat-stressed plants (826 over-expressed and 1,146 down-expressed), including 128 differentially expressed transcription factors from different families. The most significantly enriched biological processes, molecular functions, and KEGG pathways for over-expressed genes included heat response, mRNA splicing via spliceosome pathways, unfolded protein binding, and heat shock protein binding. Conversely, for down-expressed genes, the most significantly enriched categories included cell wall organization or biogenesis, protein phosphorylation, transmembrane transporter activity, ion transmembrane transporter, biosynthesis of secondary metabolites, and metabolic pathways. Discussion: Through our comprehensive meta-analysis of heat stress transcriptomics, we have identified pivotal genes integral to the heat stress response, offering profound insights into the molecular mechanisms by which plants counteract such stressors. Our findings elucidate that heat stress influences gene expression both at the transcriptional phase and post-transcriptionally, thereby substantially augmenting our comprehension of plant adaptive strategies to heat stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...