Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dent Mater ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38890091

ABSTRACT

OBJECTIVES: Baghdadite (Ca3ZrSi2O9) cements of various composition have been investigated in this study regarding an application as endodontic filling materials. METHODS: Cements were either obtained by mixing mechanically activated baghdadite powder with water (maBag) or by subsequently substituting the ß-tricalcium phosphate (ß-TCP) component in a brushite forming calcium phosphate cement. The cements were analyzed for their mechanical performance, injectability, radiopacity, phase composition and antimicrobial properties. RESULTS: The cements demonstrated sufficient mechanical performance with a compressive strength of ∼1 MPa (maBag) and 2.3 - 17.4 MPa (substituted calcium phosphate cement), good injectability > 80 % depending on the powder to liquid ratio and an intrinsic radiopacity of 1.13 - 2.05 mm aluminum equivalent. Immersion in artificial saliva proved their bioactivity by the formation of calcium phosphate and calcium silicate precipitates on the cement surface. The bacterial activity of Staphylococcus aureus cultured on the surface of the cements was found to be similar compared to clinical standard ProRoot MTA cement or even reduced by a factor of 3 for Streptococcus mutans. SIGNIFICANCE: In combination with their antibacterial properties, baghdadite cements are thought to have the potential to fulfil the clinical requirements for endodontic filling materials.

2.
Adv Healthc Mater ; 10(1): e2001232, 2021 01.
Article in English | MEDLINE | ID: mdl-32940962

ABSTRACT

Melt electrowriting (MEW) is an emerging high-resolution additive manufacturing technique based on the electrohydrodynamic processing of polymers. MEW is predominantly used to fabricate scaffolds for biomedical applications, where the microscale fiber positioning has substantial implications in its macroscopic mechanical properties. This review gives an update on the increasing number of polymers processed via MEW and different commercial sources of the gold standard poly(ε-caprolactone) (PCL). A description of MEW-processed polymers beyond PCL is introduced, including blends and coated fibers to provide specific advantages in biomedical applications. Furthermore, a perspective on printer designs and developments is highlighted, to keep expanding the variety of processable polymers for MEW.


Subject(s)
Polymers , Tissue Scaffolds , Biocompatible Materials , Polyesters , Tissue Engineering
3.
Small ; 16(44): e2003471, 2020 11.
Article in English | MEDLINE | ID: mdl-33048431

ABSTRACT

Melt electrospun fibers, in general, have larger diameters than normally achieved with solution electrospinning. This study uses a modified nozzle to direct-write melt electrospun medical-grade poly(ε-caprolactone) onto a collector resulting in fibers with the smallest average diameter being 275 ± 86 nm under certain processing conditions. Within a flat-tipped nozzle is a small acupuncture needle positioned so that reduces the flow rate to ≈0.1 µL h-1 and has the sharp tip protruding beyond the nozzle, into the Taylor cone. The investigations indicate that 1-mm needle protrusion coupled with a heating temperature of 120 °C produce the most consistent, small diameter nanofibers. Using different protrusion distances for the acupuncture needle results in an unstable jet that deposited poor quality fibers that, in turn, affects the next adjacent path. The material quality is notably affected by the direct-writing speed, which became unstable above 10 mm min-1 . Coupled with a dual head printer, first melt electrospinning, then melt electrowriting could be performed in a single, automated process for the first time. Overall, the approach used here resulted in some of the smallest melt electrospun fibers reported to date and the smallest diameter fibers from a medical-grade degradable polymer using a melt processing technology.

4.
Biomed Phys Eng Express ; 6(3): 035003, 2020 03 04.
Article in English | MEDLINE | ID: mdl-33438648

ABSTRACT

As scaffolds approach dimensions that are of clinical relevance, mechanical integrity and distribution becomes an important factor to the overall success of the implant. Hydrogels often lack the structural integrity and mechanical properties for use in vivo or handling. The inclusion of a structural support during the printing process, referred to as hybrid printing, allows the implant to retain structure and protect cells during maturation without needing to compromise its biological performance. In this study, scaffolds for the purpose of auricular cartilage reconstruction were evaluated via a hybrid printing approach using methacrylated Gelatin (GelMA) and Hyaluronic acid (HAMA) as the cell-laden hydrogel, Polycaprolactone (PCL) as structural support and Lutrol F-127 as sacrificial material. Furthermore, printing parameters such as nozzle diameter, strand spacing and filament orientation scaffolds were investigated. Compression and bending tests showed that increasing nozzle sizes decrease the compressive modulus of printed scaffolds, with up to 82% decrease in modulus when comparing between a 400 µm and 200 µm sized nozzle tip at the same strand spacing. On the contrary, strand spacing and orientation influences mainly the bending modulus due to the greater porosity and changes in pore size area. Using a 400 µm sized nozzle, scaffolds fabricated have a measured compression and bending modulus in the range similar to the native cartilage. The viability and proliferation of human mesenchymal stem cells delivered within the bioink was not affected by the printing process. Using results obtained from mechanical testing, a scaffold with matching mechanical properties across six distinct regions mimicking the human auricular cartilage can be completed in one single print process. The use of PCL and GelMA-HAMA as structural support and cell-laden hydrogel respectively are an excellent combination to provide tailored mechanical integrity, while maintaining porosity and protection to cells during differentiation.


Subject(s)
Ear Cartilage/diagnostic imaging , Hydrogels/chemistry , Mesenchymal Stem Cells/cytology , Printing, Three-Dimensional , Tissue Scaffolds , Biocompatible Materials/chemistry , Cell Differentiation , Gelatin/chemistry , Humans , Hyaluronic Acid/chemistry , Polyesters/chemistry , Polyethylenes/chemistry , Polypropylenes/chemistry , Porosity , Regeneration , Stress, Mechanical , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...