Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pulm Circ ; 8(1): 2045893217749987, 2018.
Article in English | MEDLINE | ID: mdl-29261039

ABSTRACT

Pulmonary artery endothelial cells (PAECs) express a cation current, ISOC (store-operated calcium entry current), which when activated permits calcium entry leading to inter-endothelial cell gap formation. The large molecular weight immunophilin FKBP51 inhibits ISOC but not other calcium entry pathways in PAECs. However, it is unknown whether FKBP51-mediated inhibition of ISOC is sufficient to protect the endothelial barrier from calcium entry-induced disruption. The major objective of this study was to determine whether FKBP51-mediated inhibition of ISOC leads to decreased calcium entry-induced inter-endothelial gap formation and thus preservation of the endothelial barrier. Here, we measured the effects of thapsigargin-induced ISOC on the endothelial barrier in control and FKBP51 overexpressing PAECs. FKBP51 overexpression decreased actin stress fiber and inter-endothelial cell gap formation in addition to attenuating the decrease in resistance observed with control cells using electric cell-substrate impedance sensing. Finally, the thapsigargin-induced increase in dextran flux was abolished in FKBP51 overexpressing PAECs. We then measured endothelial permeability in perfused lungs of FKBP51 knockout (FKBP51-/-) mice and observed increased calcium entry-induced permeability compared to wild-type mice. To begin to dissect the mechanism underlying the FKBP51-mediated inhibition of ISOC, a second goal of this study was to determine the role of the microtubule network. We observed that FKBP51 overexpressing PAECs exhibited increased microtubule polymerization that is critical for inhibition of ISOC by FKBP51. Overall, we have identified FKBP51 as a novel regulator of endothelial barrier integrity, and these findings are significant as they reveal a protective mechanism for endothelium against calcium entry-induced disruption.

2.
Cell Calcium ; 53(4): 275-85, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23375350

ABSTRACT

Calcium entry from the extracellular space into cells is an important signaling mechanism in both physiological and pathophysiological functions. In non-excitable cells, store-operated calcium (SOC) entry represents a principal mode of calcium entry. Activation of SOC entry in pulmonary artery endothelial cells leads to the formation of inter-endothelial cell gaps and subsequent endothelial barrier disruption. Regulation of endothelial SOC entry is poorly understood. In this work, we identify two large molecular weight immunophilins, FKBP51 and FKBP52, as novel regulators of SOC entry in endothelial cells. Using cell fractionation studies and immunocytochemistry we determined that a fraction of these largely cytosolic proteins localize to the plasma membrane where SOC entry channels are found. That FKBP51 and FKBP52 associate with SOC entry channel protein complexes was supported by co-precipitation of the immunophilins with TRPC4, a subunit of the calcium-selective, SOC entry channel ISOC. Dexamethasone-induced upregulation of FKBP51 expression in pulmonary artery endothelial cells reduced global SOC entry as well as ISOC. Similar results were observed when FKBP51 was over-expressed in an inducible HEK293 cell line. On the other hand, when FKBP52 was over-expressed SOC entry was enhanced. When expression of FKBP52 was inhibited, SOC entry was decreased. Collectively, our observations support regulatory roles for these large molecular weight immunophilins in which FKBP51 inhibits, whereas FKBP52 enhances, SOC entry in endothelial cells.


Subject(s)
Calcium/metabolism , Tacrolimus Binding Proteins/metabolism , Cells, Cultured , Endothelial Cells/cytology , Endothelial Cells/metabolism , HEK293 Cells , Humans , RNA, Small Interfering/pharmacology , Tacrolimus Binding Proteins/antagonists & inhibitors , Tacrolimus Binding Proteins/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...