Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 297: 134019, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35183580

ABSTRACT

The personal care product (PCP) industry is a worldwide multi-billion-dollar industry. Several synthetic compounds like parabens and antimicrobial agents triclosan (TCS) and triclocarban (TCC) are ingredients in many PCPs. Due to growing public awareness of potential risks associated with parabens and other synthetic compounds, more PCPs are being marketed as "green," "alternative," or "natural." We analyzed 19 green and 34 conventional PCP products obtained from a European store for seven parabens, TCC, and TCS. We found no statistically significant difference in the concentrations between green and conventional products. Only four products mentioned parabens in the list of ingredients; however, parabens were detected in 43 products, and at µg/g levels in seven PCPs. Methylparaben was typically present at the highest concentration, and one mascara exceeded the European legal concentration limit of methylparaben. Low concentrations of isopropyl-, isobutyl-, and benzylparabens, which are banned in the EU, were detected in 70% of PCPs. The cumulative estimated daily intake of parabens is an order of magnitude higher for people using only conventional products than those using green products exclusively. We propose that legislation be developed with more explicit rules on when a product can be advertised as "green" to aid consumers' choices.


Subject(s)
Anti-Infective Agents , Cosmetics , Triclosan , Anti-Bacterial Agents , Humans , Parabens
2.
J Proteome Res ; 21(3): 590-598, 2022 03 04.
Article in English | MEDLINE | ID: mdl-34928621

ABSTRACT

Metabolite identification remains a bottleneck and a still unregulated area in untargeted LC-MS metabolomics. The metabolomics research community and, in particular, the metabolomics standards initiative (MSI) proposed minimum reporting standards for metabolomics including those for reporting metabolite identification as long ago as 2007. Initially, four levels were proposed ranging from level 1 (unambiguously identified analyte) to level 4 (unidentified analyte). This scheme was expanded in 2014, by independent research groups, to give five levels of confidence. Both schemes provided guidance to the researcher and described the logical steps that had to be made to reach a confident reporting level. These guidelines have been presented and discussed extensively, becoming well-known to authors, editors, and reviewers for academic publications. Despite continuous promotion within the metabolomics community, the application of such guidelines is questionable. The scope of this meta-analysis was to systematically review the current LC-MS-based literature and effectively determine the proportion of papers following the proposed guidelines. Also, within the scope of this meta-analysis was the measurement of the actual identification levels reported in the literature, that is to find how many of the published papers really reached full metabolite identification (level 1) and how many papers did not reach this level.


Subject(s)
Metabolomics , Tandem Mass Spectrometry , Chromatography, Liquid , Reference Standards
3.
Sci Total Environ ; 621: 1-8, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29175617

ABSTRACT

Human uptake of flame retardants (FRs) such as polybrominated diphenyl ethers (PBDEs) via indoor dust ingestion is commonly considered as 100% bioaccessible, leading to potential risk overestimation. Here, we present a novel in vitro colon-extended physiologically-based extraction test (CE-PBET) with Tenax TA® as an absorptive "sink" capable to enhance PBDE gut bioaccessibility. A cellulose-based dialysis membrane (MW cut-off 3.5kDa) with high pH and temperature tolerance was used to encapsulate Tenax TA®, facilitating efficient physical separation between the absorbent and the dust, while minimizing re-absorption of the ingested PBDEs to the dust particles. As a proof of concept, PBDE-spiked indoor dust samples (n=3) were tested under four different conditions; without any Tenax TA® addition (control) and with three different Tenax TA® loadings (i.e. 0.25, 0.5 or 0.75g). Our results show that in order to maintain a constant sorptive gradient for the low MW PBDEs, 0.5g of Tenax TA® are required in CE-PBET. Tenax TA® inclusion (0.5g) resulted in 40% gut bioaccessibility for BDE153 and BDE183, whereas greater bioaccessibility values were seen for less hydrophobic PBDEs such as BDE28 and BDE47 (~60%). When tested using SRM 2585 (n=3), our new Tenax TA® method did not present any statistically significant effect (p>0.05) between non-spiked and PBDE-spiked SRM 2585 treatments. Our study describes an efficient method where due to the sophisticated design, Tenax TA® recovery and subsequent bioaccessibility determination can be simply and reliably achieved.


Subject(s)
Dust , Flame Retardants/metabolism , Halogenated Diphenyl Ethers/metabolism , Air Pollution, Indoor , Biological Availability , Dialysis , Humans , Polymers
4.
Environ Int ; 102: 48-56, 2017 May.
Article in English | MEDLINE | ID: mdl-28190611

ABSTRACT

Indoor dust has been acknowledged as a major source of flame retardants (FRs) and dust ingestion is considered a major route of exposure for humans. In the present study, we investigated the presence of PBDEs and alternative FRs such as emerging halogenated FRs (EHFRs) and organophosphate flame retardants (PFRs) in indoor dust samples from British and Norwegian houses as well as British stores and offices. BDE209 was the most abundant PBDE congener with median concentrations of 4700ngg-1 and 3400ngg-1 in UK occupational and house dust, respectively, 30 and 20 fold higher than in Norwegian house dust. Monomeric PFRs (m-PFRs), including triphenyl phosphate (TPHP), tris(chloropropyl) phosphate (TCPP) and tris(2-chloroethyl) phosphate (TCEP) dominated all the studied environments. To the best of our knowledge, this is the first report of isodecyldiphenyl phosphate (iDPP) and trixylenyl phosphate (TXP) in indoor environments. iDPP was the most abundant oligomeric PFR (o-PFR) in all dust samples, with median concentrations one order of magnitude higher than TXP and bisphenol A bis(diphenyl phosphate (BDP). iDPP and TXP worst-case scenario exposures for British workers during an 8h exposure in the occupational environment were equal to 34 and 1.4ngkgbw-1day-1, respectively. The worst-case scenario for BDE209 estimated exposure for British toddlers (820ngkgbw-1day-1) did not exceeded the proposed reference dose (RfD) (7000ngkgbw-1day-1), while exposures for sum of m-PFRs (Σm-PFRs) in British toddlers and adults (17,900 and 785ngkgbw-1day-1 respectively) were an order of magnitude higher than for Norwegian toddlers and adults (1600 and 70ngkgbw-1day-1).


Subject(s)
Air Pollution, Indoor/analysis , Dust/analysis , Environmental Exposure/analysis , Flame Retardants/analysis , Adult , Benzhydryl Compounds/analysis , Eating , Halogenated Diphenyl Ethers/analysis , Humans , Norway , Occupational Exposure/analysis , Organophosphates/analysis , Organophosphorus Compounds/analysis , Phenols/analysis , United Kingdom
5.
Environ Int ; 78: 24-31, 2015 May.
Article in English | MEDLINE | ID: mdl-25728561

ABSTRACT

Bioaccessibility studies have been widely used as a research tool to determine the potential human exposure to ingested contaminants. More recently they have been practically applied for soil borne toxic elements. This paper reviews the application of bioaccessibility tests across a range of organic pollutants and contaminated matrices. Important factors are reported to be: the physiological relevance of the test, the components in the gut media, the size fraction chosen for the test and whether it contains a sorptive sink. The bioaccessibility is also a function of the composition of the matrix (e.g. organic carbon content of soils) and the physico-chemical characteristics of the pollutant under test. Despite the widespread use of these tests, there are a large number of formats used and very few validation studies with animal models. We propose a unified format for a bioaccessibility test for organic pollutants. The robustness of this test should first be confirmed through inter laboratory comparison, then tested in-vivo.


Subject(s)
Dust/analysis , Environmental Monitoring/methods , Food Contamination/analysis , Hazardous Substances/pharmacokinetics , Organic Chemicals/pharmacokinetics , Soil Pollutants/pharmacokinetics , Animals , Biological Availability , Humans , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...