Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Biol Eng Comput ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38632207

ABSTRACT

Imagined speech recognition has developed as a significant topic of research in the field of brain-computer interfaces. This innovative technique has great promise as a communication tool, providing essential help to those with impairments. An imagined speech recognition model is proposed in this paper to identify the ten most frequently used English alphabets (e.g., A, D, E, H, I, N, O, R, S, T) and numerals (e.g., 0 to 9). A novel electroencephalogram (EEG) dataset was created by measuring the brain activity of 30 people while they imagined these alphabets and digits. As part of signal preprocessing, EEG signals are filtered before extracting delta, theta, alpha, and beta band power features. These features are used as input for classification using support vector machines, k-nearest neighbors, and random forest (RF) classifiers. It is identified that the RF classifier outperformed the others in terms of classification accuracy. Classification accuracies of 99.38% and 95.39% were achieved at the coarse-level and fine-level, respectively with the RF classifier. From our study, it is also revealed that the beta frequency band and the frontal lobe of the brain played crucial roles in imagined speech recognition. Furthermore, a comparative analysis against state-of-the-art techniques is conducted to demonstrate the efficacy of our proposed model.

2.
Heliyon ; 9(9): e19625, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809795

ABSTRACT

One of the major causes of blindness in human beings is the diabetic retinopathy (DR). To prevent blindness, early detection of DR is therefore necessary. In this paper, a hybrid model is proposed for diagnosing DR from fundus images. A combination of morphological image processing and Inception v3 deep learning techniques are exploited to detect DR as well as to classify healthy, mild non-proliferative DR (NPDR), moderate NPDR, severe NPDR, and proliferative DR (PDR). The proposed algorithm was carried out in several steps such as segmentation of blood vessels, localization and removal of optic disc, and macula, abnormal features detection (microaneurysms, hemorrhages, and neovascularization), and classification. Microaneurysms and hemorrhages that appear in the retina are the early signs of DR. In this work, we have detected microaneurysms and hemorrhages by applying dynamic contrast limited adaptive histogram equalization and threshold value on overlapping patched images. An overall accuracy of 96.83% is obtained to classify DR into five different stages. The better performance demonstrates the effectiveness and novelty of the proposed work as compared to the recent reported work.

3.
Sensors (Basel) ; 20(24)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33317023

ABSTRACT

In this paper, a novel interference free dual-hop device-to-device (D2D) aided cooperative relaying strategy (CRS) based on spatial modulation (SM) (termed D2D-CRS-SM) is proposed. In D2D-CRS-SM, two cellular users (e.g., a near user (NU) and a relay-aided far user (FU)) and a pair of D2D transmitter (D1)-receivers (D2) are served in two time-slots. Two different scenarios are investigated considering information reception criteria at the NU. Irrespective of the scenarios, the base station (BS) exploits SM to map information bits into two sets: modulation bits and antenna index, in phase-1. In the first scenario, the BS maps FU information as the modulation bits and NU information as antenna index, whereas modulation bits correspond to NU information and the antenna index carries FU's information in scenario-2. The iterative-maximum ratio combining (i-MRC) technique is then used by NU and D1 to de-map their desired information bits. During phase-2, D1 also exploits SM to forward FU's information received from BS and its own information bits to the D2D receiver D2. Then, FU and D2 retrieve their desired information by using i-MRC. Due to exploiting SM in both phases, interference free information reception is possible at each receiving node without allocating any fixed transmit power. The performance of D2D-CRS-SM is studied in terms of bit-error rate and spectral efficiency considering M-ary phase shift keying and quadrature amplitude modulation. Finally, the efficiency of D2D-CRS-SM is demonstrated via the Monte Carlo simulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...