Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 79(2): 342-358.e12, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32645368

ABSTRACT

Short linear motifs (SLiMs) drive dynamic protein-protein interactions essential for signaling, but sequence degeneracy and low binding affinities make them difficult to identify. We harnessed unbiased systematic approaches for SLiM discovery to elucidate the regulatory network of calcineurin (CN)/PP2B, the Ca2+-activated phosphatase that recognizes LxVP and PxIxIT motifs. In vitro proteome-wide detection of CN-binding peptides, in vivo SLiM-dependent proximity labeling, and in silico modeling of motif determinants uncovered unanticipated CN interactors, including NOTCH1, which we establish as a CN substrate. Unexpectedly, CN shows SLiM-dependent proximity to centrosomal and nuclear pore complex (NPC) proteins-structures where Ca2+ signaling is largely uncharacterized. CN dephosphorylates human and yeast NPC proteins and promotes accumulation of a nuclear transport reporter, suggesting conserved NPC regulation by CN. The CN network assembled here provides a resource to investigate Ca2+ and CN signaling and demonstrates synergy between experimental and computational methods, establishing a blueprint for examining SLiM-based networks.


Subject(s)
Calcineurin/metabolism , Nuclear Pore Complex Proteins/metabolism , Phosphoric Monoester Hydrolases/metabolism , Active Transport, Cell Nucleus , Amino Acid Motifs , Biotinylation , Centrosome/metabolism , Computer Simulation , HEK293 Cells , HeLa Cells , Humans , Mass Spectrometry , Phosphoric Monoester Hydrolases/chemistry , Phosphorylation , Protein Interaction Maps , Proteome/metabolism , Receptor, Notch1/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...