Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36769042

ABSTRACT

Increasing evidence supports the therapeutic potential of rare cannabis-derived phytocannabinoids (pCBs) in skin disorders such as atopic dermatitis, psoriasis, pruritus, and acne. However, the molecular mechanisms of the biological action of these pCBs remain poorly investigated. In this study, an experimental model of inflamed human keratinocytes (HaCaT cells) was set up by using lipopolysaccharide (LPS) in order to investigate the anti-inflammatory effects of the rare pCBs cannabigerol (CBG), cannabichromene (CBC), Δ9-tetrahydrocannabivarin (THCV) and cannabigerolic acid (CBGA). To this aim, pro-inflammatory interleukins (IL)-1ß, IL-8, IL-12, IL-31, tumor necrosis factor (TNF-ß) and anti-inflammatory IL-10 levels were measured through ELISA quantification. In addition, IL-12 and IL-31 levels were measured after treatment of HaCaT cells with THCV and CBGA in the presence of selected modulators of endocannabinoid (eCB) signaling. In the latter cells, the activation of 17 distinct proteins along the mitogen-activated protein kinase (MAPK) pathway was also investigated via Human Phosphorylation Array. Our results demonstrate that rare pCBs significantly blocked inflammation by reducing the release of all pro-inflammatory ILs tested, except for TNF-ß. Moreover, the reduction of IL-31 expression by THCV and CBGA was significantly reverted by blocking the eCB-binding TRPV1 receptor and by inhibiting the eCB-hydrolase MAGL. Remarkably, THCV and CBGA modulated the expression of the phosphorylated forms (and hence of the activity) of the MAPK-related proteins GSK3ß, MEK1, MKK6 and CREB also by engaging eCB hydrolases MAGL and FAAH. Taken together, the ability of rare pCBs to exert an anti-inflammatory effect in human keratinocytes through modifications of eCB and MAPK signaling opens new perspectives for the treatment of inflammation-related skin pathologies.


Subject(s)
Endocannabinoids , Mitogen-Activated Protein Kinases , Humans , Endocannabinoids/pharmacology , Endocannabinoids/metabolism , Mitogen-Activated Protein Kinases/metabolism , Lymphotoxin-alpha/metabolism , Signal Transduction , Keratinocytes/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , Inflammation/metabolism , Interleukin-12/metabolism
2.
Int J Mol Sci ; 23(10)2022 May 12.
Article in English | MEDLINE | ID: mdl-35628241

ABSTRACT

The decriminalization and legalization of cannabis has paved the way for investigations into the potential of the use of phytocannabinoids (pCBs) as natural therapeutics for the treatment of human diseases. This growing interest has recently focused on rare (less abundant) pCBs that are non-psychotropic compounds, such as cannabigerol (CBG), cannabichromene (CBC), Δ9-tetrahydrocannabivarin (THCV) and cannabigerolic acid (CBGA). Notably, pCBs can act via the endocannabinoid system (ECS), which is involved in the regulation of key pathophysiological processes, and also in the skin. In this study, we used human keratinocytes (HaCaT cells) as an in vitro model that expresses all major ECS elements in order to systematically investigate the effects of CBG, CBC, THCV and CBGA. To this end, we analyzed the gene and protein expression of ECS components (receptors: CB1, CB2, GPR55, TRPV1 and PPARα/γ/δ; enzymes: NAPE-PLD, FAAH, DAGLα/ß and MAGL) using qRT-PCR and Western blotting, along with assessments of their functionality using radioligand binding and activity assays. In addition, we quantified the content of endocannabinoid(-like) compounds (AEA, 2-AG, PEA, etc.) using UHPLC-MS/MS. Our results demonstrated that rare pCBs modulate the gene and protein expression of distinct ECS elements differently, as well as the content of endocannabinoid(-like) compounds. Notably, they all increased CB1/2 binding, TRPV1 channel stimulation and FAAH and MAGL catalytic activity. These unprecedented observations should be considered when exploring the therapeutic potential of cannabis extracts for the treatment of human skin diseases.


Subject(s)
Cannabis , Hallucinogens , Humans , Cannabinoid Receptor Agonists , Cannabis/chemistry , Endocannabinoids/metabolism , Endocannabinoids/pharmacology , Keratinocytes/metabolism , Tandem Mass Spectrometry
3.
Antiviral Res ; 197: 105211, 2022 01.
Article in English | MEDLINE | ID: mdl-34826506

ABSTRACT

AB-506, a small-molecule inhibitor targeting the HBV core protein, inhibits viral replication in vitro (HepAD38 cells: EC50 of 0.077 µM, CC50 > 25 µM) and in vivo (HBV mouse model: ∼3.0 log10 reductions in serum HBV DNA compared to the vehicle control). Binding of AB-506 to HBV core protein accelerates capsid assembly and inhibits HBV pgRNA encapsidation. Furthermore, AB-506 blocks cccDNA establishment in HBV-infected HepG2-hNTCP-C4 cells and primary human hepatocytes, leading to inhibition of viral RNA, HBsAg, and HBeAg production (EC50 from 0.64 µM to 1.92 µM). AB-506 demonstrated activity across HBV genotypes A-H and maintains antiviral activity against nucleos(t)ide analog-resistant variants in vitro. Evaluation of AB-506 against a panel of core variants showed that T33N/Q substitutions results in >200-fold increase in EC50 values, while L30F, L37Q, and I105T substitutions showed an 8 to 20-fold increase in EC50 values in comparison to the wild-type. In vitro combinations of AB-506 with NAs or an RNAi agent were additive to moderately synergistic. AB-506 exhibits good oral bioavailability, systemic exposure, and higher liver to plasma ratios in rodents, a pharmacokinetic profile supporting clinical development for chronic hepatitis B.


Subject(s)
Antiviral Agents/pharmacology , Hepatitis B virus/drug effects , Viral Core Proteins/antagonists & inhibitors , Virus Replication/drug effects , Animals , Antiviral Agents/pharmacokinetics , Cells, Cultured , Drug Evaluation, Preclinical , Female , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/virology , Humans , Mice , Rats , Virus Assembly/drug effects
4.
Biochim Biophys Acta Mol Basis Dis ; 1868(3): 166325, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34921975

ABSTRACT

OBJECTIVES: Glaucoma is characterized by progressive damage of the retinal ganglion cells (RGCs), resulting in irreversible vision loss. Cannabinoids (CBs) ameliorate several factors that contribute to the progression of glaucoma, including increased intraocular pressure (IOP), degeneration of RGC and optical nerve (ON) damage. However, a direct correlation of specific CBs with the molecular events pertaining to glaucoma pathology is not well established. Therefore, this study aims to evaluate the role of cannabinol (CBN) on RGC protection, modulation of IOP, and its effects on the level of extracellular matrix (ECM) proteins using both in vitro and in vivo models of glaucoma. METHODS AND RESULTS: When exposed to elevated hydrostatic pressure, CBN, in a dose-dependent manner, protected differentiated mouse 661W retinal ganglion precursor-like cells from pressure-induced toxicity. In human trabecular meshwork cells (hTM), CBN attenuated changes in the ECM proteins, including fibronectin and α-smooth muscle actin (α-SMA), as well as mitogen-activated protein kinases (phospho-ERK1/2) in the presence or absence of transforming growth factor-beta 2 (TGF-ß2) induced stress. Ocular pharmacokinetic parameters were evaluated post-intravitreal (IVT) CBN delivery in vivo. Furthermore, we demonstrated that IVT-administered CBN improved pattern electroretinogram (pERG) amplitudes and reduced IOP in a rat episcleral vein laser photocoagulation model of glaucoma. CONCLUSION: CBN promotes neuroprotection, abrogates changes in ECM protein, and normalizes the IOP levels in the eye. Therefore, our observations in the present study indicate a therapeutic potential for CBN in the treatment of glaucoma.


Subject(s)
Cannabinol/pharmacology , Disease Models, Animal , Glaucoma/drug therapy , Intraocular Pressure/drug effects , Neuroprotective Agents/pharmacology , Retinal Ganglion Cells/drug effects , Trabecular Meshwork/drug effects , Animals , Glaucoma/metabolism , Glaucoma/pathology , Male , Mice , Rats , Rats, Wistar , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , Trabecular Meshwork/metabolism , Trabecular Meshwork/pathology , Transforming Growth Factor beta2/metabolism
5.
Nat Commun ; 12(1): 1222, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33619272

ABSTRACT

Programmed death-ligand 1 is a glycoprotein expressed on antigen presenting cells, hepatocytes, and tumors which upon interaction with programmed death-1, results in inhibition of antigen-specific T cell responses. Here, we report a mechanism of inhibiting programmed death-ligand 1 through small molecule-induced dimerization and internalization. This represents a mechanism of checkpoint inhibition, which differentiates from anti-programmed death-ligand 1 antibodies which function through molecular disruption of the programmed death 1 interaction. Testing of programmed death ligand 1 small molecule inhibition in a humanized mouse model of colorectal cancer results in a significant reduction in tumor size and promotes T cell proliferation. In addition, antigen-specific T and B cell responses from patients with chronic hepatitis B infection are significantly elevated upon programmed death ligand 1 small molecule inhibitor treatment. Taken together, these data identify a mechanism of small molecule-induced programmed death ligand 1 internalization with potential therapeutic implications in oncology and chronic viral infections.


Subject(s)
B7-H1 Antigen/metabolism , Endocytosis , Immune Checkpoint Inhibitors/pharmacology , Small Molecule Libraries/pharmacology , Animals , Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , CHO Cells , Cell Proliferation/drug effects , Colorectal Neoplasms/pathology , Cricetulus , Disease Models, Animal , Female , Hepatitis B virus/drug effects , Humans , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/metabolism , Protein Multimerization/drug effects , Small Molecule Libraries/chemistry
6.
Article in English | MEDLINE | ID: mdl-29555628

ABSTRACT

AB-423 is a member of the sulfamoylbenzamide (SBA) class of hepatitis B virus (HBV) capsid inhibitors in phase 1 clinical trials. In cell culture models, AB-423 showed potent inhibition of HBV replication (50% effective concentration [EC50] = 0.08 to 0.27 µM; EC90 = 0.33 to 1.32 µM) with no significant cytotoxicity (50% cytotoxic concentration > 10 µM). Addition of 40% human serum resulted in a 5-fold increase in the EC50s. AB-423 inhibited HBV genotypes A through D and nucleos(t)ide-resistant variants in vitro Treatment of HepDES19 cells with AB-423 resulted in capsid particles devoid of encapsidated pregenomic RNA and relaxed circular DNA (rcDNA), indicating that it is a class II capsid inhibitor. In a de novo infection model, AB-423 prevented the conversion of encapsidated rcDNA to covalently closed circular DNA, presumably by interfering with the capsid uncoating process. Molecular docking of AB-423 into crystal structures of heteroaryldihydropyrimidines and an SBA and biochemical studies suggest that AB-423 likely also binds to the dimer-dimer interface of core protein. In vitro dual combination studies with AB-423 and anti-HBV agents, such as nucleos(t)ide analogs, RNA interference agents, or interferon alpha, resulted in additive to synergistic antiviral activity. Pharmacokinetic studies with AB-423 in CD-1 mice showed significant systemic exposures and higher levels of accumulation in the liver. A 7-day twice-daily administration of AB-423 in a hydrodynamic injection mouse model of HBV infection resulted in a dose-dependent reduction in serum HBV DNA levels, and combination with entecavir or ARB-1467 resulted in a trend toward antiviral activity greater than that of either agent alone, consistent with the results of the in vitro combination studies. The overall preclinical profile of AB-423 supports its further evaluation for safety, pharmacokinetics, and antiviral activity in patients with chronic hepatitis B.


Subject(s)
Antiviral Agents/pharmacology , Capsid/metabolism , Hepatitis B virus/drug effects , Hepatitis B/drug therapy , Virus Assembly/drug effects , Animals , Binding Sites , Cell Line, Tumor , DNA, Circular/metabolism , DNA, Viral/blood , DNA, Viral/metabolism , Female , Guanine/analogs & derivatives , Guanine/pharmacology , Hepatitis B virus/growth & development , Humans , Mice , Molecular Docking Simulation , Protein Binding , RNA, Viral/genetics
7.
Bioorg Med Chem Lett ; 23(16): 4511-6, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23856049

ABSTRACT

The kinase selectivity and pharmacokinetic optimization of a series of 7-aminofuro[2,3-c]pyridine inhibitors of TAK1 is described. The intersection of insights from molecular modeling, computational prediction of metabolic sites, and in vitro metabolite identification studies resulted in a simple and unique solution to both of these problems. These efforts culminated in the discovery of compound 13a, a potent, relatively selective inhibitor of TAK1 with good pharmacokinetic properties in mice, which was active in an in vivo model of ovarian cancer.


Subject(s)
Enzyme Inhibitors , MAP Kinase Kinase Kinases/antagonists & inhibitors , Pyridines , Amines/chemical synthesis , Amines/chemistry , Amines/pharmacology , Animals , Crystallography, X-Ray , Enzyme Activation/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Furans/chemical synthesis , Furans/chemistry , Furans/pharmacology , Humans , Inhibitory Concentration 50 , MAP Kinase Kinase Kinases/metabolism , Mice , Molecular Structure , Neoplasms/drug therapy , Phosphotransferases/chemistry , Phosphotransferases/metabolism , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Pyridines/pharmacology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
8.
Mol Cancer Ther ; 9(11): 3052-64, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20978165

ABSTRACT

Hyaluronan (HA) is a glycosaminoglycan polymer that often accumulates in malignancy. Megadalton complexes of HA with proteoglycans create a hydrated connective tissue matrix, which may play an important role in tumor stroma formation. Through its colloid osmotic effects, HA complexes contribute to tumor interstitial fluid pressure, limiting the effect of therapeutic molecules on malignant cells. The therapeutic potential of enzymatic remodeling of the tumor microenvironment through HA depletion was initially investigated using a recombinant human HA-degrading enzyme, rHuPH20, which removed HA-dependent tumor cell extracellular matrices in vitro. However, rHuPH20 showed a short serum half-life (t(1/2) < 3 minutes), making depletion of tumor HA in vivo impractical. A pegylated variant of rHuPH20, PEGPH20, was therefore evaluated. Pegylation improved serum half-life (t(1/2) = 10.3 hours), making it feasible to probe the effects of sustained HA depletion on tumor physiology. In high-HA prostate PC3 tumors, i.v. administration of PEGPH20 depleted tumor HA, decreased tumor interstitial fluid pressure by 84%, decreased water content by 7%, decompressed tumor vessels, and increased tumor vascular area >3-fold. Following repeat PEGPH20 administration, tumor growth was significantly inhibited (tumor growth inhibition, 70%). Furthermore, PEGPH20 enhanced both docetaxel and liposomal doxorubicin activity in PC3 tumors (P < 0.05) but did not significantly improve the activity of docetaxel in low-HA prostate DU145 tumors. The ability of PEGPH20 to enhance chemotherapy efficacy is likely due to increased drug perfusion combined with other tumor structural changes. These results support enzymatic remodeling of the tumor stroma with PEGPH20 to treat tumors characterized by the accumulation of HA.


Subject(s)
Antineoplastic Agents/therapeutic use , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/pharmacology , Hyaluronic Acid/metabolism , Hyaluronoglucosaminidase/metabolism , Hyaluronoglucosaminidase/pharmacology , Animals , Antineoplastic Agents/administration & dosage , CHO Cells , Cell Adhesion Molecules/administration & dosage , Cell Adhesion Molecules/pharmacokinetics , Cricetinae , Cricetulus , Drug Synergism , Humans , Hyaluronoglucosaminidase/administration & dosage , Hyaluronoglucosaminidase/pharmacokinetics , Male , Mice , Mice, Inbred ICR , Mice, Nude , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/pharmacokinetics , Polyethylene Glycols/pharmacology , Rats , Recombinant Proteins/administration & dosage , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacokinetics , Recombinant Proteins/pharmacology , Tumor Cells, Cultured , Up-Regulation/genetics , Xenograft Model Antitumor Assays
9.
Cancer Res ; 63(9): 2072-8, 2003 May 01.
Article in English | MEDLINE | ID: mdl-12727822

ABSTRACT

Prostate cancer is a common malignancy affecting men, which is often associated with skeletal metastases resulting in significant morbidity and mortality. In this hormone-dependent cancer, low levels of a prostate secretory protein of 94 amino acids (PSP-94) are associated with advanced disease stage. In the current study, we have examined the effect of PSP-94 on prostate cancer growth and experimental metastases to the skeleton. For these studies, MatLyLu rat prostate cancer cells were transfected with full-length cDNA encoding parathyroid hormone-related protein [PTHrP (MatLyLu-PTHrP cells)], which is known to be the major pathogenetic factor for malignancy-associated hypercalcemia. MatLyLu-PTHrP cells were inoculated s.c. into the right flank or via intracardiac route into the left ventricle of syngeneic male Copenhagen rats. Intracardiac inoculation of MatLyLu cells routinely results in the development of tumors in the lumbar vertebrae, resulting in hind-limb paralysis. Animals were infused with different doses of PSP-94 (0.1, 1.0, and 10.0 micro g/kg/day) starting on the day of tumor cell inoculation. Time of hind-limb paralysis and tumor volume were determined, and comparison was made between PSP-94-treated animals and control animals receiving vehicle alone. At the end of the study, animals were sacrificed, and plasma calcium, plasma PTHrP, and tumor PTHrP levels were determined. Whereas the highest dose of PSP-94 caused a modest but statistically significant delay in the development of hind-limb paralysis, a marked dose-dependent decrease in primary tumor volume was seen in experimental animals receiving PSP-94 due to its ability to promote tumor cell apoptosis. Furthermore, whereas control animals routinely developed hypercalcemia due to PTHrP production, treatment with PSP-94 led to a near normalization of plasma calcium and a marked reduction in PTHrP production as determined by radioimmunoassay and immunohistochemistry. Collectively, these results demonstrate the ability of PSP-94 to be an effective treatment modality for prostate cancer, where decrease in plasma PTHrP and calcium levels can serve as useful biochemical markers for monitoring the efficacy of this novel antitumor agent.


Subject(s)
Hypercalcemia/drug therapy , Prostatic Neoplasms/blood , Prostatic Neoplasms/drug therapy , Prostatic Secretory Proteins/pharmacology , Animals , Apoptosis/drug effects , Bone Neoplasms/prevention & control , Bone Neoplasms/secondary , Calcium/blood , Cell Division/drug effects , Cell Division/physiology , Humans , Hypercalcemia/blood , Male , Parathyroid Hormone-Related Protein , Peptide Hormones/blood , Peptide Hormones/genetics , Prostatic Neoplasms/pathology , Rats , Transfection , Tumor Cells, Cultured
10.
Cancer Chemother Pharmacol ; 50(6): 490-6, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12451476

ABSTRACT

PURPOSE: We have recently identified a deoxycytidine nucleoside analogue, troxacitabine (beta- L-dioxolane cytidine, Troxatyl; Shire BioChem), which has potent antitumor activity against both leukemia and solid tumors. In contrast to the cytidine nucleoside analogues currently in clinical use (cytarabine and gemcitabine), troxacitabine is a poor substrate of nucleoside transporters and enters cells primarily by passive diffusion. This unusual property led us to evaluate the efficacy of troxacitabine in multidrug resistant (MDR) and multidrug resistance-associated protein (MRP) tumors. METHODS: The in vitro antiproliferative activity of troxacitabine was investigated in the human nasopharyngeal epidermoid carcinoma cell line, KB, and its vincristine-resistant derivative (KBV), as well as in human leukemia cell lines of myeloid and lymphoblastoid origin, HL60 and CCRF-CEM, respectively, and their MDR (HL60/R10 and CCRF-CEM/VLB) and MRP (HL60/ADR) derivatives, using the thymidine incorporation assay. For in vivo studies, we compared the antitumor efficacy of troxacitabine with that of doxorubicin and vinblastine in xenograft models of these solid and hematological human anthracycline-resistant tumor xenografts. RESULTS: Troxacitabine demonstrated potent antiproliferative activity against both P-glycoprotein-positive (KBV, HL60/R10, CCRF-CEM/VLB) and P-glycoprotein-negative (HL60/ADR) multidrug-resistant cell lines with IC(50) values ranging from 7 to 171 n M. Tumor regression was observed in the KBV xenograft following a 5-day treatment with 20, 50 and 100 mg/kg of troxacitabine, with percent total growth inhibition (TGI) of 81, 96 and 97, respectively, and some cures at the two highest dose levels. In the HL60, HL60/R10, HL60/ADR and CCRF-CEM/VLB xenografts, the effect of troxacitabine was evaluated on survival time. In the HL60 promyelocytic human xenograft models, troxacitabine treatment (25, 50 and 100 mg/kg per day for 5 days) was initiated 10 days after tumor cell inoculation, once animals had developed disseminated tumors. In all three promyelocytic leukemia xenografts, troxacitabine was quite potent, producing T/C values of 162% to 315% as well as complete cures at the higher dose levels. In the CCRF-CEM/VLB T-lymphoblastoid leukemia xenograft, troxacitabine treatment (10, 30 or 250 mg/kg total doses using different schedules) was initiated 20 days after tumor cell inoculation. Troxacitabine was not as potent in this model but did result in significant antileukemic activity (T/C of 131%) when administered at 10 mg/kg on days 20, 27 and 34. CONCLUSIONS: These results indicate that troxacitabine has a potent in vivo antitumor activity associated with tumor regressions and complete cures in animals with tumors refractory to current chemotherapeutic agents.


Subject(s)
Antineoplastic Agents/therapeutic use , Cytosine/analogs & derivatives , Cytosine/therapeutic use , Dioxolanes/therapeutic use , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Neoplasms, Experimental/drug therapy , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Antibiotics, Antineoplastic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Cell Division/drug effects , Female , Flow Cytometry , Humans , In Vitro Techniques , Mice , Mice, Inbred BALB C , Mice, Nude , Mice, SCID , Multidrug Resistance-Associated Proteins/metabolism , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Transplantation, Heterologous , Tumor Cells, Cultured/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...