Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 28(25): 255301, 2016 06 29.
Article in English | MEDLINE | ID: mdl-27166511

ABSTRACT

We theoretically studied the quasiparticle transport in a 2D electron gas biased in the quantum Hall regime and in the presence of a lateral potential barrier. The lateral junction hosts the specific magnetic field dependent quasiparticle states highly localized in the transverse direction. The quantum tunnelling across the barrier provides a complex bands structure of a one-dimensional energy spectrum of these bound states, [Formula: see text], where p y is the electron momentum in the longitudinal direction y. Such a spectrum manifests itself by a large number of peaks and drops in the dependence of the magnetic edge states transmission coefficient D(E ) on the electron energy E. E.g. the high value of D occurs as soon as the electron energy E reaches gaps in the spectrum. These peaks and drops of D(E) result in giant oscillations of the transverse conductance G x with the magnetic field and/or the transport voltage. Our theoretical analysis, based on the coherent macroscopic quantum superposition of the bound states and the magnetic edge states propagating along the system boundaries, is in a good accord with the experimental observations found in Kang et al (2000 Lett. Nat. 403 59).

2.
Phys Rev Lett ; 107(23): 236802, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-22182114

ABSTRACT

We consider dc-electronic transport through a nanowire suspended between normal- and spin-polarized metal leads in the presence of an external magnetic field. We show that magnetomotive coupling between the electrical current through the nanowire and vibrations of the wire may result in self-excitation of mechanical vibrations. The self-excitation mechanism is based on correlations between the occupancy of the quantized electronic energy levels inside the nanowire and the velocity of the nanowire. We derive conditions for the occurrence of the instability and find stable regimes of mechanical oscillations.

3.
Phys Rev Lett ; 100(20): 206402, 2008 May 23.
Article in English | MEDLINE | ID: mdl-18518559

ABSTRACT

We predict a new type of phase transition in a quasi-one-dimensional system of interacting electrons at high magnetic fields, the stabilization of a density wave which transforms a two-dimensional open Fermi surface into a periodic chain of large pockets with small distances between them. We show that quantum tunneling of electrons between the neighboring closed orbits enveloping these pockets transforms the electron spectrum into a set of extremely narrow energy bands and gaps that decreases the total electron energy, thus leading to a magnetic breakdown induced density wave ground state analogous to the well-known instability of the Peierls type.

SELECTION OF CITATIONS
SEARCH DETAIL
...