Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(28): e2301660, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37178371

ABSTRACT

Emerging technologies for integrated optical circuits demand novel approaches and materials. This includes a search for nanoscale waveguides that should satisfy criteria of high optical density, small cross-section, technological feasibility and structural perfection. All these criteria are met with self-assembled gallium phosphide (GaP) epitaxial nanowires. In this work, the effects of the nanowire geometry on their waveguiding properties are studied both experimentally and numerically. Cut-off wavelength dependence on the nanowire diameter is analyzed to demonstrate the pathways for fabrication of low-loss and subwavelength cross-section waveguides for visible and near-infrared (IR) ranges. Probing the waveguides with a supercontinuum laser unveils the filtering properties of the nanowires due to their resonant action. The nanowires exhibit perfect elasticity allowing fabrication of curved waveguides. It is demonstrated that for the nanowire diameters exceeding the cut-off value, the bending does not sufficiently reduce the field confinement promoting applicability of the approach for the development of nanoscale waveguides with a preassigned geometry. Optical X-coupler made of two GaP nanowires allowing for spectral separation of the signal is fabricated. The results of this work open new ways for the utilization of GaP nanowires as elements of advanced photonic logic circuits and nanoscale interferometers.

2.
Nanoscale ; 15(5): 2332-2339, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36637064

ABSTRACT

Semiconductor nanowires are the perfect platform for nanophotonic applications owing to their resonant, waveguiding optical properties and technological capabilities providing control over their crystalline and chemical compositions. The vapor-liquid-solid growth mechanism allows the formation of hybrid metal-dielectric nanostructures promoting sub-wavelength light manipulation. In this work, we explore both experimentally and numerically the plasmonic effects promoted by a gallium (Ga) nanoparticle optical antenna decorating the facet of gallium phosphide (GaP) nanowires. Raman, photoluminescence and near-field mapping techniques are used to study the effects. We demonstrate several phenomena including field enhancement, antenna effect and increase in internal reflection. We show that the observed effects have to be considered when nanowires with a plasmonic particle are used in nanophotonic circuits and discuss the ways for utilization of these effects for efficient coupling of light into nanowire waveguide and field tailoring. The results open up promising pathways for the development of both passive and active nanophotonic elements, light harvesting and sensorics.

3.
Nanomaterials (Basel) ; 13(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36615966

ABSTRACT

The development of novel nanophotonic devices and circuits necessitates studies of optical phenomena in nanoscale structures. Catalyzed semiconductor nanowires are known for their unique properties including high crystallinity and silicon compatibility making them the perfect platform for optoelectronics and nanophotonics. In this work, we explore numerically optical properties of gallium phosphide nanowires governed by their dimensions and study waveguiding, coupling between the two wires and resonant field confinement to unveil nanoscale phenomena paving the way for the fabrication of the integrated optical circuits. Photonic coupling between the two adjacent nanowires is studied in detail to demonstrate good tolerance of the coupling to the distance between the two aligned wires providing losses not exceeding 30% for the gap of 100 nm. The dependence of this coupling is investigated with the wires placed nearby varying their relative position. It is found that due to the resonant properties of a nanowire acting as a Fabry-Perot cavity, two coupled wires represent an attractive system for control over the optical signal processing governed by the signal interference. We explore size-dependent plasmonic behaviors of the metallic Ga nanoparticle enabling GaP nanowire as an antenna-waveguide hybrid system. We demonstrate numerically that variation of the structure dimensions allows the nearfield tailoring. As such, we explore GaP NWs as a versatile platform for integrated photonic circuits.

4.
Nanomaterials (Basel) ; 13(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36615968

ABSTRACT

Zinc oxide (ZnO) nanostructures are widely used in various fields of science and technology due to their properties and ease of fabrication. To achieve the desired characteristics for subsequent device application, it is necessary to develop growth methods allowing for control over the nanostructures' morphology and crystallinity governing their optical and electronic properties. In this work, we grow ZnO nanostructures via hydrothermal synthesis using surfactants that significantly affect the growth kinetics. Nanostructures with geometry from nanowires to hexapods are obtained and studied with photoluminescence (PL) spectroscopy. Analysis of the photoluminescence spectra demonstrates pronounced exciton on a neutral donor UV emission in all of the samples. Changing the growth medium chemical composition affects the emission characteristics sufficiently. Apart the UV emission, nanostructures synthesized without the surfactants demonstrate deep-level emission in the visible range with a peak near 620 nm. Structures synthesized with the use of sodium citrate exhibit emission peak near 520 nm, and those with polyethylenimine do not exhibit the deep-level emission. Thus, we demonstrate the correlation between the hydrothermal growth conditions and the obtained ZnO nanostructures' optical properties, opening up new possibilities for their precise control and application in nanophotonics, UV-Vis and white light sources.

5.
Materials (Basel) ; 13(10)2020 May 18.
Article in English | MEDLINE | ID: mdl-32443456

ABSTRACT

An InAs/InGaAs quantum dot laser with a heterostructure epitaxially grown on a silicon substrate was used to fabricate injection microdisk lasers of different diameters (15-31 µm). A post-growth process includes photolithography and deep dry etching. No surface protection/passivation is applied. The microlasers are capable of operating heatsink-free in a continuous-wave regime at room and elevated temperatures. A record-low threshold current density of 0.36 kA/cm2 was achieved in 31 µm diameter microdisks operating uncooled. In microlasers with a diameter of 15 µm, the minimum threshold current density was found to be 0.68 kA/cm2. Thermal resistance of microdisk lasers monolithically grown on silicon agrees well with that of microdisks on GaAs substrates. The ageing test performed for microdisk lasers on silicon during 1000 h at a constant current revealed that the output power dropped by only ~9%. A preliminary estimate of the lifetime for quantum-dot (QD) microlasers on silicon (defined by a double drop of the power) is 83,000 h. Quantum dot microdisk lasers made of a heterostructure grown on GaAs were transferred onto a silicon wafer using indium bonding. Microlasers have a joint electrical contact over a residual n+ GaAs substrate, whereas their individual addressing is achieved by placing them down on a p-contact to separate contact pads. These microdisks hybridly integrated to silicon laser at room temperature in a continuous-wave mode. No effect of non-native substrate on device characteristics was found.

SELECTION OF CITATIONS
SEARCH DETAIL
...