Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res ; 1832: 148842, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38447599

ABSTRACT

BACKGROUND: Idiopathic trigeminal neuralgia (TN) cases encountered frequently in daily practice indicate significant gaps that still need to be illuminated in the etiopathogenesis. In this study, a novel TN animal model was developed by compressing the dorsal horn (DH) of the upper cervical spinal cord. METHODS: Eighteen rabbits were equally divided into three groups, namely control (CG), sham (SG), and spinal cord compression (SCC) groups. External pressure was applied to the left side at the C3 level in the SCC group. Dorsal hemilaminectomy was performed in the SG, and the operative side was closed without compression. No procedure was implemented in the control group. Samples from the SC, TG, and ION were taken after seven days. For the histochemical staining, damage and axons with myelin were scored using Hematoxylin and Eosin and Toluidine Blue, respectively. Immunohistochemistry, nuclei, apoptotic index, astrocyte activity, microglial labeling, and CD11b were evaluated. RESULTS: Mechanical allodynia was observed on the ipsilateral side in the SCC group. In addition, both the TG and ION were partially damaged from SC compression, which resulted in significant histopathological changes and increased the expression of all markers in both the SG and SCC groups compared to that in the CG. There was a notable increase in tissue damage, an increase in the number of apoptotic nuclei, an increase in the apoptotic index, an indication of astrocytic gliosis, and an upsurge in microglial cells. Significant increases were noted in the SG group, whereas more pronounced significant increases were observed in the SCC group. Transmission electron microscopy revealed myelin damage, mitochondrial disruption, and increased anchoring particles. Similar changes were observed to a lesser extent in the contralateral spinal cord. CONCLUSION: Ipsilateral trigeminal neuropathic pain was developed due to upper cervical SCC. The clinical finding is supported by immunohistochemical and ultrastructural changes. Thus, alterations in the DH due to compression of the upper cervical region should be considered as a potential cause of idiopathic TN.


Subject(s)
Cervical Cord , Neuralgia , Trigeminal Neuralgia , Animals , Rabbits , Trigeminal Neuralgia/complications , Trigeminal Neuralgia/metabolism , Trigeminal Neuralgia/pathology , Cervical Cord/metabolism , Neuralgia/metabolism , Spinal Cord/metabolism , Trigeminal Nerve , Spinal Cord Dorsal Horn/metabolism , Hyperalgesia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...