Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Phytoremediation ; : 1-18, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38093707

ABSTRACT

Bioremediation using tropical marine algae provides cost effective and eco-friendly alternative mean of removing toxic and harmful substances from the environment. Bioremediation is an important tool in sustainable environmental management and protection. This study examined the productivity and bioremediation potential of Nannochloropsis oculata and Porphyridium cruentum in Water Soluble Fraction (WSF) of petroleum fuels by investigating the growth of Nannochloropsis oculata and Porphyridium cruentum at 0%, 10% 20% 30% 40% 50% 75% 100% of WSF of kerosene, diesel, and gasoline. Growth was monitored optically every two days for fourteen days using 721 Visible Spectrophotometer. Productivity was measured using prescribed procedure. Bioremediation potential of test algae were examined using standard method for the GC analysis of diesel range organics in 100% WSFs. The minimum growth for both species was recorded at 100% in all the fuels. The maximum growth of Porphyridium cruentum was obtained at 10% in all fuels, while the maximum growth of Nannochloropsis oculata was obtained at 30% in both kerosene and gasoline and at 50% in diesel. Whereas Porphyridium cruentum was greatly inhibited by all fuels, Nannochloropsis oculata was stimulated at lower concentration of the fuels. Nannochloropsis oculata proved more efficient for bioremediation of the petroleum fuels with 84.58%, 65.51% and 70.77% removal efficiency for kerosene, diesel and gasoline respectively, while Porphyridium cruentum was 58.94%, 46.64% and 56.67% respectively. Nannochloropsis oculata is a very strong and reliable candidate for bioremediation of petroleum hydrocarbons and should be subjected to further examination for sustainable and eco-friendly remediation of petroleum pollution.


In this study, bioremediation of 100% Water Soluble Fraction (very high concentration) of the three most commonly used petroleum fuels (gasoline, diesel, kerosene) were examined. The bioremediation potential of the test algae were examined simultaneously in three petroleum fuels to enhance comparative assessment and to reduce the effect of environmental changes. This study identifies specific tropical marine alga that has high biomass productivity and bioremediation efficiency in tropical marine or coastal waters polluted with very high concentration of WSF of petroleum hydrocarbons. The result of this study is recommended for adoption by the bioremediation industries for the removal of high concentration of WSF of petroleum hydrocarbons in tropical marine waters and industrial waste waters. It may also be subjected to further examination.

2.
Environ Sci Pollut Res Int ; 27(28): 35284-35293, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32592053

ABSTRACT

Microcystins (MCs) are the most studied toxins of cyanobacteria in freshwater bodies worldwide. However, they are poorly documented in coastal waters in several parts of the world. In this study, we investigated the composition of cyanobacteria and the presence of microcystins (MCs) in several coastal aquatic ecosystems of Nigeria. Direct morphological analysis revealed that members of the genus Oscillatoria were dominant with five species, followed by Trichodesmium with two species in Nigerian coastal waters. Oso Ibanilo had the highest cyanobacterial biomass (998 × 103 cells/L), followed by Rivers Ocean (156 × 103 cells/L). Except for the Cross River Ocean, cyanobacteria were present in all the investigated aquatic ecosystems. Ten (10) out of twenty water bodies examined had detectable levels of MCs. Furthermore, genomic DNA analysis for the mcyE gene of microcystin synthetase (mcy) cluster showed identities higher than 86% (query coverage > 96%) with toxic strains of cyanobacteria in all the samples analyzed. Also, the sequences of samples matched those of uncultured cyanobacteria from recreational lakes in Southern Germany. Our findings indicate that the presence of toxic cyanobacteria in coastal waters of Nigeria is of public and environmental health concern.


Subject(s)
Ecosystem , Microcystins/analysis , Environmental Monitoring , Germany , Guinea , Nigeria
3.
Toxicon ; 114: 16-27, 2016 May.
Article in English | MEDLINE | ID: mdl-26896635

ABSTRACT

Algal toxins may accumulate in fish and shellfish and thus cause poisoning in consumers of seafood. Such toxins and the algae producing them are regularly surveyed in many countries, including Europe, North America, Japan and others. However, very little is known regards the occurrence of such algae and their toxins in most African countries. This paper reports on a survey of phytoplankton and algal toxins in Nigerian coastal waters. Seawater samples were obtained from four sites for phytoplankton identification, on three occasions between the middle of October 2014 and the end of February 2015 (Bar Beach and Lekki in Lagos State, Port Harcourt in Rivers State and Uyo in Akwa Ibom State). The phytoplankton community was generally dominated by diatoms and cyanobacteria; however several species of dinoflagellates were also identified: Dinophysis caudata, Lingulodinium polyedrum and two benthic species of Prorocentrum. Passive samplers (containing Diaion(®) HP-20 resin) were deployed for several 1-week periods on the same four sites to obtain profiles of algal toxins present in the seawater. Quantifiable amounts of okadaic acid (OA) and pectenotoxin 2 (PTX2), as well as traces of dinophysistoxin 1 (DTX1) were detected at several sites. Highest concentrations (60 ng OA g(-1) HP-20 resin) were found at Lekki and Bar Beach stations, which also had the highest salinities. Non-targeted analysis using full-scan high resolution mass spectrometry showed that algal metabolites differed from site to site and for different sampling occasions. Screening against a marine natural products database indicated the potential presence of cyanobacterial compounds in the water column, which was also consistent with phytoplankton analysis. During this study, the occurrence of the marine dinoflagellate toxins OA and PTX2 has been demonstrated in coastal waters of Nigeria, despite unfavourable environmental conditions, with regards to the low salinities measured. Hence shellfish samples should be monitored in future to assess the risk for public health through accumulation of such toxins in seafood.


Subject(s)
Dinoflagellida/metabolism , Marine Toxins/analysis , Phytoplankton/metabolism , Chromatography, Liquid , Dinoflagellida/ultrastructure , Environmental Monitoring , Furans/analysis , Furans/chemistry , Furans/metabolism , Macrolides , Marine Toxins/chemistry , Mass Spectrometry , Nigeria , Okadaic Acid/analysis , Okadaic Acid/chemistry , Okadaic Acid/metabolism , Phytoplankton/ultrastructure , Pyrans/analysis , Pyrans/chemistry , Pyrans/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...