Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Membranes (Basel) ; 13(7)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37505001

ABSTRACT

Sodium pectate derivatives with 25% replacement of sodium ions with nickel ions were obtained by carbonization to temperatures of 280, 550, and 800 °C, under special protocols in an inert atmosphere by carbonization to temperatures of 280, 550, and 800 °C. The 25% substitution is the upper limit of substitution of sodium for nickel ions, above which the complexes are no longer soluble in water. It was established that the sample carburized to 550 °C is the most effective active element in the hydrogen-oxidation reaction, while the sample carbonized up to 800 °C was the most effective in the oxygen-reduction reaction. The poor performance of the catalytic system involving the pectin coordination biopolymer carbonized up to 280 °C was due to loss of proton conductivity caused by water removal and mainly by two-electron transfer in one catalytic cycle of the oxygen-reduction reaction. The improved performance of the system with coordination biopolymer carbonized up to 550 °C was due to the better access of gases to the catalytic sites and four-electron transfer in one catalytic cycle. The (Ni-NaPG)800C sample contains metallic nickel nanoparticles and loose carbon, which enhances the electrical conductivity and gas capacity of the catalytic system. In addition, almost four-electron transfer is observed in one catalytic cycle of the oxygen-reduction reaction.

2.
Nanomaterials (Basel) ; 13(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36903709

ABSTRACT

This work aimed to obtain an optically transparent electrode based on the oriented nanonetworks of nickel in poly(3,4-ethylenedioxythiophene) polystyrene sulfonate matrix. Optically transparent electrodes are used in many modern devices. Therefore, the search for new inexpensive and environmentally friendly materials for them remains an urgent task. We have previously developed a material for optically transparent electrodes based on oriented platinum nanonetworks. This technique was upgraded to obtain a cheaper option from oriented nickel networks. The study was carried out to find the optimal electrical conductivity and optical transparency values of the developed coating, and the dependence of these values on the amount of nickel used was investigated. The figure of merit (FoM) was used as a criterion for the quality of the material in terms of finding the optimal characteristics. It was shown that doping PEDOT: PSS with p-toluenesulfonic acid in the design of an optically transparent electroconductive composite coating based on oriented nickel networks in a polymer matrix is expedient. It was found that the addition of p-toluenesulfonic acid to an aqueous dispersion of PEDOT: PSS with a concentration of 0.5% led to an eight-fold decrease in the surface resistance of the resulting coating.

3.
Molecules ; 28(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36677608

ABSTRACT

Brain tumor glioblastoma is one of the worst types of cancer. The blood-brain barrier prevents drugs from reaching brain cells and shields glioblastoma from treatment. The creation of nanocarriers to improve drug delivery and internalization effectiveness may be the solution to this issue. In this paper, we report on a new nanocarrier that was developed to deliver the anticancer drug doxorubicin to glioblastoma cells. The nanocarrier was obtained by nanoemulsion polymerization of diallyl disulfide with 1-allylthymine. Diallyl disulfide is a redox-sensitive molecule involved in redox cell activities, and thymine is a uracil derivative and one of the well-known bioactive compounds that can enhance the pharmacological activity of doxorubicin. Doxorubicin was successfully introduced into the nanocarrier with a load capacity of about 4.6%. Biological studies showed that the doxorubicin nanocarrier composition is far more cytotoxic to glioblastoma cells (T98G) than it is to cancer cells (M-HeLa) and healthy cells (Chang liver). The nanocarrier improves the penetration of doxorubicin into T98G cells and accelerates the cells' demise, as is evident from flow cytometry and fluorescence microscopy data. The obtained nanocarrier, in our opinion, is a promising candidate for further research in glioblastoma therapy.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Glioblastoma , Nanoparticles , Humans , Thymine , Drug Carriers/therapeutic use , Glioblastoma/drug therapy , Doxorubicin , Drug Delivery Systems , Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy
4.
Int J Mol Sci ; 23(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36430721

ABSTRACT

A number of nickel complexes of sodium pectate with varied Ni2+ content have been synthesized and characterized. The presence of the proton conductivity, the possibility of the formation of a dense spatial network of transition metals in these coordination biopolymers, and the immobilization of transition ions in the catalytic sites of this class of compounds make them promising for proton-exchange membrane fuel cells. It has been established that the catalytic system composed of a coordination biopolymer with 20% substitution of sodium ions for divalent nickel ions, Ni (20%)-NaPG, is the leading catalyst in the series of 5, 15, 20, 25, 35% substituted pectates. Among the possible reasons for the improvement in performance the larger specific surface area of this sample compared to the other studied materials and the narrowest distribution of the vertical size of metal arrays were registered. The highest activity during CV and proximity to four-electron transfer during the catalytic cycle have also been observed for this compound.


Subject(s)
Nickel , Protons , Pectins , Oxygen
5.
Pharmaceutics ; 14(7)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35890403

ABSTRACT

The present work introduces rational design of nanoparticulate Mn(II)-based contrast agents through both variation of the µ3 (inner) ligands within a series of hexarhenium cluster complexes [{Re6(µ3-Q)8}(CN)6]4- (Re6Q8, Q = S2-, Se2- or Te2-) and interfacial decoration of the nanoparticles (NPs) K4-2xMnxRe6Q8 (x = 1.3 - 1.8) by a series of pluronics (F-68, P-123, F-127). The results highlight an impact of the ligand and pluronic for the optimal colloid behavior of the NPs allowing high colloid stability in ambient conditions and efficient phase separation under the centrifugation. It has been revealed that the K4-2xMnxRe6Se8 NPs and those decorated by F-127 are optimal from the viewpoint of magnetic relaxivities r1 and r2 (8.9 and 10.9 mM-1s-1, respectively, at 0.47 T) and low hemoagglutination activity. The insignificant leaching of Mn2+ ions from the NPs correlates with their insignificant effect on the cell viability of both M-HeLa and Chang Liver cell lines. The T1- and T2-weighted contrast ability of F-127-K4-2xMnxRe6Q8 NPs was demonstrated through the measurements of phantoms at whole body 1.5 T scanner.

6.
Langmuir ; 38(16): 4921-4934, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35405069

ABSTRACT

Novel cationic amphiphiles of the 3-alkyl-1-(4-methoxyphenyl)-1H-imidazol-3-ium bromide series bearing methoxyphenyl fragments (MPI-n) have been synthesized. Their aggregation properties in aqueous solutions, solubilization capacity, and hemolytic and antimicrobial activities have been investigated by a number of physicochemical methods. Using tensiometry, conductometry, and fluorescence spectroscopy, it was shown that the MPI-n have lower CMCs than their nonfunctionalized counterparts. The unusual alkyl-chain-length-dependent morphology of aggregates is testified for this homological series. Amphiphiles with 12, 14, and 16 alkyl tails are characterized by the formation of micellar aggregates, while a surfactant with a decyl tail is characterized by the formation of larger aggregates with lower surface curvature. The MPI-10 aggregate morphology was rationalized in terms of the packing parameter consideration and was supported by size measurements and the fluorescence probe techniques, which showed that vesicle-like aggregates in close-packing mode probably occur. MPI-n aggregates have exhibited a high solubilization capacity toward hydrophobic azo dye Orange OT. Importantly, amphiphiles studied showed (i) high bacteriostatic activity at the level of ciprofloxacin; (ii) high bactericidal action against all Gram-positive bacteria, including methicillin-resistant strains; (iii) bactericidal properties against Gram-negative bacteria; and (iv) low hemolytic activity.


Subject(s)
Micelles , Surface-Active Agents , Anti-Bacterial Agents/pharmacology , Cations , Hydrophobic and Hydrophilic Interactions , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology
7.
ACS Omega ; 7(3): 3073-3082, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35097302

ABSTRACT

New 1-cetyl-4-aza-1-azoniabicyclo[2.2.2]octane bromide complexes with copper(II) bromide and lanthanum(III) nitrate were characterized using dynamic light scattering and transmission electron microscopy, with self-assembly and the morphological behavior elucidated. For the lanthanum(III) nitrate complex, the 3D crystal structure was characterized using X-ray diffractometry. These metallosurfactants were tested as antitumor agents, and a high cytotoxic effect comparable with doxorubicin was revealed against the M-HeLa and A-549 cell lines. Both complexes were 2 times more active toward the MCF-7 cell line than the breast cancer drug tamoxifen. The cytotoxic mechanism of complexes is assumed to be related to the induction of apoptosis through the mitochondrial pathway.

8.
Data Brief ; 39: 107594, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34869807

ABSTRACT

Data for iron and manganese-containing sodium pectate complexes are reported. Such complexes are potentially capable of exhibiting catalytic properties to the electroreduction of small molecules. Also, the complexes are water-soluble due to their ligands. The combination of these factors makes them promising for homogeneous electrocatalysis. However, in many respects, these complexes remain poorly understood. The Fourier-transform infrared spectroscopy data for the sodium pectate complexes with manganese and iron in the range of 500-4000 cm-1 were obtained. The electron spin resonance spectra of the complexes make it possible to characterize oxidation states of the metal centers in the complexes. The cyclic voltammetry data for the complexes both in an aqueous solution saturated with argon and saturated with carbon dioxide were received. For both complexes after deposition of the complexes on graphite managed to get micrographs by the atomic force microscopy method.

9.
Molecules ; 26(18)2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34576996

ABSTRACT

A selective noble-metal-free molecular catalyst has emerged as a fruitful approach in the quest for designing efficient and stable catalytic materials for CO2 reduction. In this work, we report that a sodium pectate complex of copper (PG-NaCu) proved to be highly active in the electrocatalytic conversion of CO2 to CH4 in water. Stability and selectivity of conversion of CO2 to CH4 as a product at a glassy carbon electrode were discovered. The copper complex PG-NaCu was synthesized and characterized by physicochemical methods. The electrochemical CO2 reduction reaction (CO2RR) proceeds at -1.5 V vs. Ag/AgCl at ~10 mA/cm2 current densities in the presence of the catalyst. The current density decreases by less than 20% within 12 h of electrolysis (the main decrease occurs in the first 3 h of electrolysis in the presence of CO2). This copper pectate complex (PG-NaCu) combines the advantages of heterogeneous and homogeneous catalysts, the stability of heterogeneous solid materials and the performance (high activity and selectivity) of molecular catalysts.

10.
Int J Pharm ; 605: 120803, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34144135

ABSTRACT

New liposomes modified with pyrrolidinium surfactants containing a hydroxyethyl fragment (CnPB, n = 12, 14, 16) were prepared for transdermal delivery of non-steroidal anti-inflammatory drugs. In order to obtain the optimal composition, the surfactant/lipid molar ratio (0.02/1; 0.029/1; 0.04/1) and the amphiphile hydrocarbon tail length were varied. Rhodamine B was loaded in all formulations, while meloxicam and ketoprofen in selected ones. For liposomes studied the hydrodynamic diameter was in the range of 80-130 nm, the zeta potential ranged from +35 to +50 mV, EE was 75-99%. Liposome modification leads to a prolonged release of the rhodamine B (up to 10-12 h) and faster release of non-steroidal drugs (up to 7-8 h) in vitro. The ability to cross the skin barrier using Franz cells was investigated for liposomal meloxicam and ketoprofen. The total amount of meloxicam and ketoprofen passed through the Strat-M® membranes during 51 h was 51-114 µg/cm2 and 87-105 µg/cm2 respectively. The evaluation of transdermal diffusion ex vivo showed that total amount of liposomal ketoprofen passed through the skin during 51 h was 140-162 µg/cm2. Liposomes modified with C16PB were found as the most effective inflammation reducing formulation in the carrageenan edema model of rat paw.


Subject(s)
Ketoprofen , Liposomes , Administration, Cutaneous , Animals , Anti-Inflammatory Agents, Non-Steroidal , Meloxicam , Particle Size , Rats , Skin
11.
Chemphyschem ; 22(3): 288-292, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33325116

ABSTRACT

The paper demonstrates a technique for applying an oriented nickel network to a glass surface. The method is based on the chemical reduction of nickel salt. The shaping and orientation of the resulting system are carried out using a micellar template of a surfactant and a magnetic field. Submicron nickel fibres are used to impart unity to the plurality of individual-oriented nickel nanonetworks. The result is a single conductive coating on the surface of the glass, which has a transparency in the optical range. Investigations of the structure, chemical composition, morphology and electrical conductivity of the coating were performed.

12.
Int J Mol Sci ; 21(18)2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32967166

ABSTRACT

Achieving high thermal stability and control of supramolecular organization of functional dyes in sensors and nonlinear optics remains a demanding task. This study was aimed at the evaluation of thermal behavior and Langmuir monolayer characteristics of topologically varied nitrothiacalixarene multichromophores and phenol monomers. A nitration/azo coupling alkylation synthetic route towards partially O-substituted nitrothiacalixarenes and 4-nitrophenylazo-thiacalixarenes was proposed and realized. Nuclear magnetic resonance (NMR) spectroscopy and X-ray diffractometry of disubstituted nitrothiacalix[4]arene revealed a rare 1,2-alternate conformation. A synchronous thermal analysis indicated higher decomposition temperatures of nitrothiacalixarene macrocycles as compared with monomers. Through surface pressure/potential-molecular area measurements, nitrothiacalixarenes were shown to form Langmuir monolayers at the air-water interface and, through atomic force microscopy (AFM) technique, Langmuir-Blodgett (LB) films on solid substrates. Reflection-absorption spectroscopy of monolayers and electronic absorption spectroscopy of LB films of nitrothiacalixarenes recorded a red-shifted band (290 nm) with a transition from chloroform, indicative of solvatochromism. Additionally, shoulder band at 360 nm was attributed to aggregation and supported by gas-phase density functional theory (DFT) calculations and dynamic light scattering (DLS) analysis in chloroform-methanol solvent in the case of monoalkylated calixarene 3. Excellent thermal stability and monolayer formation of nitrothiacalixarenes suggest their potential as functional dyes.


Subject(s)
Membranes, Artificial , Phenols/chemistry , Adsorption , Molecular Conformation
13.
Mol Pharm ; 17(1): 40-49, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31746611

ABSTRACT

The addition of specific chemical groups in a macrocycle structure influences its functional properties and, consequently, can provide new possibilities, among which are aggregation properties, water solubility, biocompatibility, stimuli response, biological activity, etc. Herein, we report synthesis of new resorcin[4]arene with N-methyl-d-glucamine groups on the upper rim and n-decyl chains on the lower rim, an investigation of its self-assembly behavior in aqueous media, and its use as a building block for the formation of drug nanocontainer. N-methyl-d-glucamine fragments in the resorcin[4]arene structure promote higher stability in solutions, simplification of self-aggregation, and increased biological activity. Antimicrobial and hemolytic activity assessment revealed that this resorcin[4]arene obtained is nontoxic. The study of cell penetration was carried out with both free and encapsulated doxorubicin (DOX). Surprisingly, DOX-loaded macrocycle aggregates are more efficient in causing apoptosis in human cancer cell line. Conceivably, this knowledge will help in the rational design of DOX combination for novel drug-administration strategies in cancer treatment.


Subject(s)
Apoptosis/drug effects , Calixarenes/chemistry , Drug Carriers/chemistry , Nanoparticles/chemistry , Antibiotics, Antineoplastic/administration & dosage , Calixarenes/chemical synthesis , Cell Line, Tumor , Doxorubicin/administration & dosage , Hepatocytes/drug effects , Humans , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , Solubility
14.
Molecules ; 24(10)2019 May 20.
Article in English | MEDLINE | ID: mdl-31137548

ABSTRACT

Deep insight of the toxicity of supramolecular systems based on macrocycles is of fundamental interest because of their importance in biomedical applications. What seems to be most interesting in this perspective is the development of the macrocyclic compounds with biocompatible fragments. Here, calix[4]resorcinarene derivatives containing N-methyl- d-glucamine moieties at the upper rim and different chemical groups at the lower rim were synthesized and investigated. These macrocycles showed a tendency to self-aggregate in aqueous solution, and their self-assembly abilities depend on the structure of the lower rim. The in vitro cytotoxic and antimicrobial activity of the calix[4]resorcinarenes revealed the relationship of biological properties with the ability to aggregate. Compared to macrocycles with methyl groups on the lower rim, calix[4]resorcinarenes with sulfonate groups appear to possess very similar antibacterial properties, but over six times less hemolytic activity. In some ways, this is the first example that reveals the dependence of the observed hemolytic and antibacterial activity on the lipophilicity of the calix[4]arene structure.


Subject(s)
Calixarenes/chemistry , Calixarenes/pharmacology , Phenylalanine/analogs & derivatives , Anti-Bacterial Agents/pharmacology , Calixarenes/chemical synthesis , Cell Death/drug effects , Diffusion , Electric Conductivity , Humans , Macrocyclic Compounds/chemistry , Particle Size , Phenylalanine/chemical synthesis , Phenylalanine/chemistry , Phenylalanine/pharmacology , Static Electricity , Surface Tension
15.
Colloids Surf B Biointerfaces ; 178: 352-357, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30901595

ABSTRACT

Novel liposomes based on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and imidazolium-containing amphiphiles with various length of hydrophobic tail at various molar ratio of components have been fabricated. Obtained formulations were characterized using dynamic and electrophoretic light scattering as well as transmission electron microscopy techniques. It has been established, that DPPC liposomes modification by these cationic amphiphiles resulted in zeta potential increase from +3 mV to +45-70 mV and improve its stability for a long time (more than 6 months, whereas unmodified liposomes have been destructed after 2 weeks of storage). Hydrodynamic diameter of prepared hybrid liposomes was in the range of 70-100 nm depending on its composition. Fabricated hybrid carriers have been used for drug (metronidazole) encapsulation. It has been shown, that superior encapsulation characteristics (encapsulation efficiency was 75%) exhibited hybrid liposomes composed from octadecyl derivative. Increase of the time of total release of encapsulated drug from hybrid liposomes in comparison with unencapsulated drug by 1.7 times has been demonstrated.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Drug Carriers/chemistry , Liposomes/chemistry , Imidazoles/chemistry , Metronidazole/chemistry
16.
Chempluschem ; 84(10): 1560-1566, 2019 10.
Article in English | MEDLINE | ID: mdl-31943934

ABSTRACT

A nanocarrier (p(6SRA-5B)) for glucose-controlled insulin delivery consists of sulfonated resorcinarenes (SRA) that are assembled into a spherical shell and are attached to each other with phenylboronate linkers. p(6SRA-5B) is stable in water and blood plasma at normal glucose concentrations. At high glucose levels (>5 mM), p(6SRA-5B) dissociates into SRA and phenylboronates through competitive interaction with excess glucose. Insulin was successfully encapsulated into the cavity of p(6SRA-5B) and its release was investigated in water and blood plasma by NMR, UV, CD, and fluorescence spectroscopy. The results show that the dissociation of the nanocarrier and the insulin release occurs with an increase in glucose concentration. At 5 mM glucose, the nanocarrier is stable, and the insulin release does not exceed 10 %. Increasing the glucose concentration to 7.5-10 mM results in a 40-100 % insulin release. p(6SRA-5B) is thus a promising insulin nanocarrier for the treatment of type 1 diabetes.


Subject(s)
Calixarenes/chemistry , Drug Carriers/chemistry , Drug Delivery Systems/methods , Glucose/pharmacology , Insulin/administration & dosage , Phenylalanine/analogs & derivatives , Boronic Acids/chemistry , Diabetes Mellitus, Type 1/drug therapy , Drug Liberation/drug effects , Humans , Phenylalanine/chemistry , Polymers/chemistry , Sulfonic Acids/chemistry
17.
J Colloid Interface Sci ; 538: 387-396, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30530036

ABSTRACT

The present work introduces a facile synthetic route to embed phosphorescent K2[{Mo6I8}I6] and (nBu4N)2[{Mo6I8}(CH3COO)6] clusters (C) onto silica-water interface of amino-decorated silica nanoparticles (SNs, 60 ±â€¯6 nm). The assembled C-SNs gain in the luminescence intensity, which remains stable within three months after their assembly. High uptake capacity of the clusters (8700 of K2[{Mo6I8}I6] and 6500 of (nBu4N)2[{Mo6I8}(CH3COO)6] per the each nanoparticle) derives from ionic self-assembly and coordination bonds between the cluster complexes and ionic (amino- and siloxy-) groups at the silica surface. The coordination via amino- or siloxy-groups restricts aquation and hydrolysis of the embedded clusters, in comparison with the parent K2[{Mo6I8}I6] and (nBu4N)2[{Mo6I8}(CH3COO)6. High potential of the assembled nanoparticles in the ROS generation was revealed by EPR measurements facilitated by spin trapping. The high positive charge and convenient colloid stability of the assembled C-SNs hybrids are the prerequisite for their efficient cellular uptake, which is exemplified in the work by MCF-7 cell line. The measured dark and photoinduced cytotoxicity of the C-SNs hybrids reveals significant photodynamic therapy effect on the MCF-7 cancer cell line versus the normal cells. This effect is entirely due to the embedded clusters and is dependent on the chemical composition of the cluster.


Subject(s)
Amines/chemistry , Luminescence , Molybdenum/chemistry , Nanostructures/chemistry , Optical Imaging , Photochemotherapy , Silicon Dioxide/chemistry , Cell Survival/drug effects , Humans , MCF-7 Cells , Particle Size , Silicon Dioxide/pharmacology , Surface Properties , Tumor Cells, Cultured
18.
Beilstein J Nanotechnol ; 9: 1594-1601, 2018.
Article in English | MEDLINE | ID: mdl-29977693

ABSTRACT

Novel polymer nanospheres (p(SRA-B)) were prepared by cross-linking a sulfonated resorcinarene (SRA) with phenylboronic acid. p(SRA-B) shows good stability in water and can be used as a nanocontainer for the pH- and glucose-controlled substrate release. Fluorescent dyes (fluorescein, pyrene and 1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt) were successfully loaded into p(SRA-B). The release of dye is achieved by lowering the pH value to 3 or by adding glucose.

19.
Colloids Surf B Biointerfaces ; 171: 358-367, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30059851

ABSTRACT

New mixed cationic liposomes based on L-α-phosphatidylcholine and dihexadecylmethylhydroxyethylammonium bromide (DHDHAB) were designed to overcome the BBB crossing by using the intranasal route. Synthesis and self-assembly of DHDHAB were performed. A low critical association concentration (0.01 mM), good solubilization properties toward hydrophobic dye Orange OT and antimicrobial activity against gram-positive bacteria Staphylococcus aureus (MIC=7.8 µg mL-1) and Bacillus cereus (MIC=7.8 µg mL-1), low hemolytic activities against human red blood cells (less than 10%) were achieved. Conditions for preparation of cationic vesicles and mixed liposomes with excellent colloidal stability at room temperature were determined. The intranasal administration of rhodamine B-loaded cationic liposomes was shown to increase bioavailability into the brain in comparison to the intravenous injection. The cholinesterase reactivator, 2-PAM, was used as model drug for the loading in cationic liposomes. 2-PAM-loaded cationic liposomes displayed high encapsulation efficiency (∼ 90%) and hydrodynamic diameter close to 100 nm. Intranasally administered 2-PAM-loaded cationic liposomes were effective against paraoxon-induced acetylcholinesterase inhibition in the brain. 2-PAM-loaded liposomes reactivated 12 ± 1% of brain acetylcholinesterase. This promising result opens the possibility to use marketed positively charged oximes in medical countermeasures against organophosphorus poisoning for reactivation of central acetylcholinesterase by implementing a non-invasive approach, via the "nose-brain" pathway.


Subject(s)
Anti-Bacterial Agents/pharmacology , Brain/drug effects , Cholinesterase Reactivators/pharmacology , Drug Delivery Systems , Pralidoxime Compounds/pharmacology , Quaternary Ammonium Compounds/pharmacology , Acetylcholinesterase/metabolism , Administration, Intranasal , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Bacillus cereus/drug effects , Brain/metabolism , Cations/chemistry , Cholinesterase Reactivators/administration & dosage , Cholinesterase Reactivators/chemistry , Liposomes/chemistry , Paraoxon/antagonists & inhibitors , Paraoxon/pharmacology , Particle Size , Pralidoxime Compounds/administration & dosage , Pralidoxime Compounds/chemistry , Quaternary Ammonium Compounds/chemical synthesis , Quaternary Ammonium Compounds/chemistry , Rhodamines/administration & dosage , Rhodamines/chemistry , Staphylococcus aureus/drug effects , Surface Properties
20.
Colloids Surf B Biointerfaces ; 162: 52-59, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29149728

ABSTRACT

The present work introduces an impact of polyelectrolyte-based hydrophilic shell on magnetic relaxivity and luminescence of hard cores built from isostructural complexes of Tb(III) and Gd(III) in the core-shell aqueous colloids. Microscopic and scattering techniques reveal "plum pudding" morphology of the colloids, where polyelectrolyte-coated ultrasmall (<5nm) hard cores form aggregates in aqueous solutions. Interaction of bovine serum albumin (BSA) with the colloids provides a tool to modify the polyelectrolyte-based shell, which is the reason for the improvement in both aggregation behavior of the colloids and their relaxivity. The modification of the hydrophilic polyelectrolyte-based shell enables to tune the longitudinal relaxivity from 5.9 to 23.3mM-1s-1 at 0.47T. This tendency is the reason for significant improvement of contrasting effect of the colloids in T1- and T2-weighted images obtained by whole body scanner at 1.5T. High contrasting effect of the colloids, together with low cytotoxicity towards Wi-38 diploid human cells makes them promising MRI contrast agents.


Subject(s)
Contrast Media/chemistry , Gadolinium/chemistry , Magnetic Resonance Imaging/methods , Polyelectrolytes/chemistry , Serum Albumin, Bovine/chemistry , Terbium/chemistry , Cell Line , Cell Survival/drug effects , Colloids , Fibroblasts/cytology , Fibroblasts/drug effects , Hydrophobic and Hydrophilic Interactions , Luminescence , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...