Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(41): 38539-38545, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37867665

ABSTRACT

The application of nanoparticles (NPs) in the oil and gas industry has received wide attention in recent years because it is increasingly being considered a promising approach to recovering trapped oil in conventional hydrocarbon reservoirs. Numerous studies have demonstrated that combining nanoparticles with a surfactant can enhance surfactant performance by changing the interfacial properties of the solution when it comes in contact with crude oil and rock surfaces. However, more information and additional experimental data are required concerning the application of titanium dioxide nanoparticles in alkyl ethoxy carboxylic surfactants. In this study, we measure the changes in interfacial tension and wettability due to the addition of titanium dioxide nanoparticles (0, 100, 250, and 500 ppm) in alkyl ethoxy carboxylic surfactant using a spinning drop tensiometer and contact angle measurements. The interfacial tension of the crude oil-water (surfactant) system decreases by approximately two orders of magnitude with an increasing titanium dioxide concentration, exhibiting a minimum value of 5.85 × 10-5 mN/m. Similarly, the contact angle decreases on the surface of the Berea sandstone by combining the surfactant with titanium dioxide, reaching a minimum contact angle of 8.8°. These results demonstrate the potential of this new approach to maximize the recovery of trapped oil and significantly improve oil production.

2.
Heliyon ; 8(8): e10377, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36061008

ABSTRACT

Since the prehistoric era, hematite has been known as a reddish color pigment on rock art, body paint, and decorating substances for objects discovered almost worldwide. Recently, studies about purple hematite used in prehistoric pigment have been done vigorously to investigate the origin of the purple pigment itself. These previous studies indicate that the differentiation of crystallinity, crystal size, morphology, and electronic structure can cause the color shift, resulting in purple hematite. In this study, we conducted a detailed study of the sintering temperature effects on the formation of hematite minerals. This study aims to reveal the structural, crystallography, and electronic transformation in hematite due to heating treatment at various temperatures. The hematite was synthesized using precipitation to imitate the primary method of hematite formation in nature. The sintering process was carried out with temperature variations from 600 °C to 1100 °C and then characterized by crystallographic and structural properties (XRD, Raman Spectroscopy, FTIR), particle size (TEM), as well as electronic properties (DRS, XANES). The crystallinity and particle size of hematite tend to increase along with higher sintering temperatures. Moreover, we noted that the octahedral distortion underwent an intensification with the increase in sintering temperature, which affected the electronic structure of hematite. Specifically, the 1s → 3d transition exhibited lower energy for hematite produced at a higher temperature. This induced a shift in the absorbed energy of the polychromatic light that led to a color shift within hematite, from red to purple. Our finding emphasizes the importance of electronic structure in explaining hematite pigment's color change rather than relying on simple reasons, such as particle size and crystallinity. In addition, this might strengthen the hypothesis that the prehistoric human created a purple hematite pigment through heating.

SELECTION OF CITATIONS
SEARCH DETAIL
...