Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Biol Educ ; 23(2)2022 Aug.
Article in English | MEDLINE | ID: mdl-36061313

ABSTRACT

The Genomics Education Partnership (GEP) engages students in a course-based undergraduate research experience (CURE). To better understand the student attributes that support success in this CURE, we asked students about their attitudes using previously published scales that measure epistemic beliefs about work and science, interest in science, and grit. We found, in general, that the attitudes students bring with them into the classroom contribute to two outcome measures, namely, learning as assessed by a pre- and postquiz and perceived self-reported benefits. While the GEP CURE produces positive outcomes overall, the students with more positive attitudes toward science, particularly with respect to epistemic beliefs, showed greater gains. The findings indicate the importance of a student's epistemic beliefs to achieving positive learning outcomes.

2.
Article in English | MEDLINE | ID: mdl-32148609

ABSTRACT

A hallmark of the research experience is encountering difficulty and working through those challenges to achieve success. This ability is essential to being a successful scientist, but replicating such challenges in a teaching setting can be difficult. The Genomics Education Partnership (GEP) is a consortium of faculty who engage their students in a genomics Course-Based Undergraduate Research Experience (CURE). Students participate in genome annotation, generating gene models using multiple lines of experimental evidence. Our observations suggested that the students' learning experience is continuous and recursive, frequently beginning with frustration but eventually leading to success as they come up with defendable gene models. In order to explore our "formative frustration" hypothesis, we gathered data from faculty via a survey, and from students via both a general survey and a set of student focus groups. Upon analyzing these data, we found that all three datasets mentioned frustration and struggle, as well as learning and better understanding of the scientific process. Bioinformatics projects are particularly well suited to the process of iteration and refinement because iterations can be performed quickly and are inexpensive in both time and money. Based on these findings, we suggest that a dynamic of "formative frustration" is an important aspect for a successful CURE.

3.
CBE Life Sci Educ ; 13(4): 711-23, 2014.
Article in English | MEDLINE | ID: mdl-25452493

ABSTRACT

In their 2012 report, the President's Council of Advisors on Science and Technology advocated "replacing standard science laboratory courses with discovery-based research courses"-a challenging proposition that presents practical and pedagogical difficulties. In this paper, we describe our collective experiences working with the Genomics Education Partnership, a nationwide faculty consortium that aims to provide undergraduates with a research experience in genomics through a scheduled course (a classroom-based undergraduate research experience, or CURE). We examine the common barriers encountered in implementing a CURE, program elements of most value to faculty, ways in which a shared core support system can help, and the incentives for and rewards of establishing a CURE on our diverse campuses. While some of the barriers and rewards are specific to a research project utilizing a genomics approach, other lessons learned should be broadly applicable. We find that a central system that supports a shared investigation can mitigate some shortfalls in campus infrastructure (such as time for new curriculum development, availability of IT services) and provides collegial support for change. Our findings should be useful for designing similar supportive programs to facilitate change in the way we teach science for undergraduates.


Subject(s)
Genomics/education , Curriculum , Models, Educational , Program Development , United States , Universities
4.
CBE Life Sci Educ ; 13(1): 111-30, 2014.
Article in English | MEDLINE | ID: mdl-24591510

ABSTRACT

There is widespread agreement that science, technology, engineering, and mathematics programs should provide undergraduates with research experience. Practical issues and limited resources, however, make this a challenge. We have developed a bioinformatics project that provides a course-based research experience for students at a diverse group of schools and offers the opportunity to tailor this experience to local curriculum and institution-specific student needs. We assessed both attitude and knowledge gains, looking for insights into how students respond given this wide range of curricular and institutional variables. While different approaches all appear to result in learning gains, we find that a significant investment of course time is required to enable students to show gains commensurate to a summer research experience. An alumni survey revealed that time spent on a research project is also a significant factor in the value former students assign to the experience one or more years later. We conclude: 1) implementation of a bioinformatics project within the biology curriculum provides a mechanism for successfully engaging large numbers of students in undergraduate research; 2) benefits to students are achievable at a wide variety of academic institutions; and 3) successful implementation of course-based research experiences requires significant investment of instructional time for students to gain full benefit.


Subject(s)
Biology/education , Curriculum , Research/education , Attitude , Cooperative Behavior , Data Collection , Faculty , Genome , Genomics/education , Humans , Knowledge , Learning , Molecular Sequence Annotation , Program Evaluation , Research Personnel , Self Report , Surveys and Questionnaires , Time Factors
5.
Dev Biol ; 296(1): 94-103, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16712835

ABSTRACT

Cell migration is an important feature of embryonic development as well as tumor metastasis. Border cells in the Drosophila ovary have emerged as a useful in vivo model for uncovering the molecular mechanisms that control many aspects of cell migration including guidance. It was previously shown that two receptor tyrosine kinases, epidermal growth factor receptor (EGFR) and PDGF- and VEGF-related receptor (PVR), together contribute to border cell migration. Whereas the ligand for PVR, PVF1, is known to guide border cells, it is unclear which of the four activating EGFR ligands function in this process. We developed an assay to detect the ability of secreted factors to reroute migrating border cells in vivo and tested the activity of EGFR ligands compared to PVF1. Two ligands, Keren and Spitz, guided border cells whereas the other ligands, Gurken and Vein, did not. In addition, only Keren and Spitz were expressed at the appropriate stage in the oocyte, the target of border cell migration. Therefore, a complex combination of EGFR and PVR ligands together guide border cells to the oocyte.


Subject(s)
Cell Movement/physiology , Drosophila Proteins/physiology , Drosophila melanogaster/physiology , ErbB Receptors/physiology , Ovary/physiology , Protein Kinases/physiology , Receptors, Invertebrate Peptide/physiology , Animals , Drosophila Proteins/agonists , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Egg Proteins/metabolism , Egg Proteins/physiology , Epidermal Growth Factor/physiology , ErbB Receptors/agonists , Female , Ligands , Membrane Proteins/physiology , Neuregulins/physiology , Ovary/cytology , Receptors, Invertebrate Peptide/agonists , Transforming Growth Factor alpha/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...