Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 53(18): 9615-24, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25147972

ABSTRACT

Vibrational properties and the temperature-induced phase transition mechanism have been studied in [NH4][Zn(HCOO)3] and [ND4][Zn(DCOO)3] metal organic frameworks by variable-temperature dielectric, IR, and Raman measurements. DFT calculations allowed proposing the detailed assignment of vibrational modes to respective motions of atoms in the unit cell. Temperature-dependent studies reveal a very weak isotopic effect on the phase transition temperature and confirm that ordering of ammonium cations plays a major role in the mechanism of the phase transition. We also present high-pressure Raman scattering studies on [ND4][Zn(DCOO)3]. The results indicate the rigidity of the formate ions and strong compressibility of the ZnO6 octahedra. They also reveal the onset of a pressure-induced phase transition at about 1.1 GPa. This transition has strong first-order character, and it is associated with a large distortion of the metal formate framework. Our data indicate the presence of at least two nonequivalent formate ions in the high-pressure structure with very different C-D bonds. The decompression experiment shows that the transition is reversible.

2.
J Phys Chem A ; 117(33): 7989-8000, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23895641

ABSTRACT

Density functional and Møller-Plesset second-order perturbation (MP2) calculations have been carried out on various model cation-π complexes formed through the interactions of Mg(2+), Ca(2+), and NH4(+) cations with benzene, p-methylphenol, and 3-methylindole. Partial hydration of the metal cations was also considered in these model studies to monitor the effect of hydration of cations in cation-π interactions. The binding energies of these complexes were computed from the fully optimized structures using coupled cluster calculations including triple excitations (CCSD(T)) and Gaussian-G4-MP2 (G4MP2) techniques. An analysis of the charge sharing between the donor (the π-systems) and the acceptors (the cations) together with the partitioning of total interaction energies revealed that the strong and weak cation-π interactions have similar electrostatic interaction properties. Further decomposition of such electrostatic terms into their multipolar components showed the importance of the charge-dipole, charge-quadrupole, and charge-octopole terms in shaping the electrostatic forces in such interactions. The computed vibrational spectra of the complexes were analyzed for the specific cation-π interaction modes and have been shown to contain the signature of higher order electrostatic interaction energy components (quadrupole and octopole) in such interactions.


Subject(s)
Ammonium Compounds/chemistry , Calcium/chemistry , Magnesium/chemistry , Quantum Theory , Benzene/chemistry , Cations/chemistry , Cresols/chemistry , Skatole/chemistry , Static Electricity
3.
Chemphyschem ; 12(16): 2948-58, 2011 Nov 18.
Article in English | MEDLINE | ID: mdl-21984168

ABSTRACT

We perform a systematic investigation on small silicon-doped boron clusters B(n)Si (n=1-7) in both neutral and anionic states using density functional (DFT) and coupled-cluster (CCSD(T)) theories. The global minima of these B(n)Si(0/-) clusters are characterized together with their growth mechanisms. The planar structures are dominant for small B(n)Si clusters with n≤5. The B(6)Si molecule represents a geometrical transition with a quasi-planar geometry, and the first 3D global minimum is found for the B(7)Si cluster. The small neutral B(n)Si clusters can be formed by substituting the single boron atom of B(n+1) by silicon. The Si atom prefers the external position of the skeleton and tends to form bonds with its two neighboring B atoms. The larger B(7)Si cluster is constructed by doping Si-atoms on the symmetry axis of the B(n) host, which leads to the bonding of the silicon to the ring boron atoms through a number of hyper-coordination. Calculations of the thermochemical properties of B(n)Si(0/-) clusters, such as binding energies (BE), heats of formation at 0 K (ΔH(f)(0)) and 298 K (ΔH(f)([298])), adiabatic (ADE) and vertical (VDE) detachment energies, and dissociation energies (D(e)), are performed using the high accuracy G4 and complete basis-set extrapolation (CCSD(T)/CBS) approaches. The differences of heats of formation (at 0 K) between the G4 and CBS approaches for the B(n)Si clusters vary in the range of 0.0-4.6 kcal mol(-1). The largest difference between two approaches for ADE values is 0.15 eV. Our theoretical predictions also indicate that the species B(2)Si, B(4)Si, B(3)Si(-) and B(7)Si(-) are systems with enhanced stability, exhibiting each a double (σ and π) aromaticity. B(5)Si(-) and B(6)Si are doubly antiaromatic (σ and π) with lower stability.

4.
Chemphyschem ; 12(7): 1358-66, 2011 May 09.
Article in English | MEDLINE | ID: mdl-21488139

ABSTRACT

Theoretical studies on BC(n) (n=1-6) clusters are carried out using density functional theory, Møller-Plesset second-order perturbation theory (MP2), coupled-cluster calculations including up to triple excitations (CCSD(T)), and higher-level approaches. All possible isomers depending on the positions of the boron atom are generated and the lowest-energy isomers are determined for doublet and quartet electronic states. The three potential evolution paths of the clusters are determined as a function of their size. The energetic and electronic consequences for the increased size of structures differ significantly, which leads to representatives of the ground electronic state from different structural groups. The ab initio calculated thermal functions allow enhancements to the available atomization energies and improve the agreement between the calculated and experimental heat content.

SELECTION OF CITATIONS
SEARCH DETAIL
...