Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Microbiology (Reading) ; 170(2)2024 02.
Article in English | MEDLINE | ID: mdl-38358321

ABSTRACT

Endogenous endophthalmitis caused by Gram-negative bacteria is an intra-ocular infection that can rapidly progress to irreversible loss of vision. While most endophthalmitis isolates are susceptible to antibiotic therapy, the emergence of resistant bacteria necessitates alternative approaches to combat intraocular bacterial proliferation. In this study the ability of predatory bacteria to limit intraocular growth of Pseudomonas aeruginosa, Serratia marcescens, and Staphylococcus aureus was evaluated in a New Zealand white rabbit endophthalmitis prevention model. Predatory bacteria Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus were able to reduce proliferation of keratitis isolates of P. aeruginosa and to a lesser extent S. marcescens. However, it was not able to significantly reduce the number of intraocular S. aureus, which is not a productive prey for these predatory bacteria, suggesting that the inhibitory effect on P. aeruginosa and S. marcescens requires active predation rather than an antimicrobial immune response. Similarly, UV-inactivated B. bacteriovorus were unable to prevent proliferation of P. aeruginosa. Together, these data indicate in vivo inhibition of Gram-negative bacteria proliferation within the intra-ocular environment by predatory bacteria.


Subject(s)
Endophthalmitis , Pseudomonas Infections , Animals , Rabbits , Fluoroquinolones/pharmacology , Pseudomonas aeruginosa , Serratia marcescens , Predatory Behavior , Staphylococcus aureus , Cell Proliferation
2.
bioRxiv ; 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37745563

ABSTRACT

Endogenous endophthalmitis caused by Gram-negative bacteria is an intra-ocular infection that can rapidly progress to irreversible loss of vision. While most endophthalmitis isolates are susceptible to antibiotic therapy, the emergence of resistant bacteria necessitates alternative approaches to combat intraocular bacterial proliferation. In this study the ability of predatory bacteria to limit intraocular growth of Pseudomonas aeruginosa, Serratia marcescens, and Staphylococcus aureus was evaluated in a New Zealand White rabbit endophthalmitis prevention model. Predatory bacteria Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus were able to reduce proliferation of keratitis isolates of P. aeruginosa and S. marcescens. However, it was not able to significantly reduce S. aureus, which is not a productive prey for these predatory bacteria, suggesting that the inhibitory effect on P. aeruginosa requires active predation rather than an antimicrobial immune response. Similarly, UV-inactivated B. bacteriovorus were unable to prevent proliferation of P. aeruginosa. Together, these data suggest in vivo predation of Gram-negative bacteria within the intra-ocular environment.

3.
Ocul Surf ; 28: 254-261, 2023 04.
Article in English | MEDLINE | ID: mdl-37146902

ABSTRACT

PURPOSE: Pseudomonas aeruginosa keratitis is a severe ocular infection that can lead to perforation of the cornea. In this study we evaluated the role of bacterial quorum sensing in generating corneal perforation and bacterial proliferation and tested whether co-injection of the predatory bacteria Bdellovibrio bacteriovorus could alter the clinical outcome. P. aeruginosa with lasR mutations were observed among keratitis isolates from a study collecting samples from India, so an isogenic lasR mutant strain of P. aeruginosa was included. METHODS: Rabbit corneas were intracorneally infected with P. aeruginosa strain PA14 or an isogenic ΔlasR mutant and co-injected with PBS or B. bacteriovorus. After 24 h, eyes were evaluated for clinical signs of infection. Samples were analyzed by scanning electron microscopy, optical coherence tomography, sectioned for histology, and corneas were homogenized for CFU enumeration and for inflammatory cytokines. RESULTS: We observed that 54% of corneas infected by wild-type PA14 presented with a corneal perforation (n = 24), whereas only 4% of PA14 infected corneas that were co-infected with B. bacteriovorus perforate (n = 25). Wild-type P. aeruginosa proliferation was reduced 7-fold in the predatory bacteria treated eyes. The ΔlasR mutant was less able to proliferate compared to the wild-type, but was largely unaffected by B. bacteriovorus. CONCLUSION: These studies indicate a role for bacterial quorum sensing in the ability of P. aeruginosa to proliferate and cause perforation of the rabbit cornea. Additionally, this study suggests that predatory bacteria can reduce the virulence of P. aeruginosa in an ocular prophylaxis model.


Subject(s)
Corneal Perforation , Eye Infections, Bacterial , Keratitis , Pseudomonas Infections , Animals , Rabbits , Pseudomonas aeruginosa , Pseudomonas Infections/microbiology , Keratitis/drug therapy , Cornea/pathology , Bacteria , Cell Proliferation , Eye Infections, Bacterial/microbiology
4.
bioRxiv ; 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36993476

ABSTRACT

Purpose: Pseudomonas aeruginosa keratitis is a severe ocular infection that can lead to perforation of the cornea. In this study we evaluated the role of bacterial quorum sensing in generating corneal perforation and bacterial proliferation and tested whether co-injection of the predatory bacteria Bdellovibrio bacteriovorus could alter the clinical outcome. P. aeruginosa with lasR mutations were observed among keratitis isolates from a study collecting samples from India, so an isogenic lasR mutant strain of P. aeruginosa was included. Methods: Rabbit corneas were intracorneally infected with P. aeruginosa strain PA14 or an isogenic Δ lasR mutant and co-injected with PBS or B. bacteriovorus . After 24 h, eyes were evaluated for clinical signs of infection. Samples were analyzed by scanning electron microscopy, optical coherence tomography, sectioned for histology, and corneas were homogenized for CFU enumeration and for inflammatory cytokines. Results: We observed that 54% of corneas infected by wild-type PA14 presented with a corneal perforation (n=24), whereas only 4% of PA14 infected corneas that were co-infected with B. bacteriovorus perforate (n=25). Wild-type P. aeruginosa proliferation was reduced 7-fold in the predatory bacteria treated eyes. The Δ lasR mutant was less able to proliferate compared to the wild-type, but was largely unaffected by B. bacteriovorus . Conclusion: These studies indicate a role for bacterial quorum sensing in the ability of P. aeruginosa to proliferate and cause perforation of the rabbit cornea. Additionally, this study suggests that predatory bacteria can reduce the virulence of P. aeruginosa in an ocular prophylaxis model.

5.
Proc Natl Acad Sci U S A ; 120(6): e2212650120, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36730197

ABSTRACT

Biofilm formation, including adherence to surfaces and secretion of extracellular matrix, is common in the microbial world, but we often do not know how interaction at the cellular spatial scale translates to higher-order biofilm community ecology. Here we explore an especially understudied element of biofilm ecology, namely predation by the bacterium Bdellovibrio bacteriovorus. This predator can kill and consume many different Gram-negative bacteria, including Vibrio cholerae and Escherichia coli. V. cholerae can protect itself from predation within densely packed biofilm structures that it creates, whereas E. coli biofilms are highly susceptible to B. bacteriovorus. We explore how predator-prey dynamics change when V. cholerae and E. coli are growing in biofilms together. We find that in dual-species prey biofilms, E. coli survival under B. bacteriovorus predation increases, whereas V. cholerae survival decreases. E. coli benefits from predator protection when it becomes embedded within expanding groups of highly packed V. cholerae. But we also find that the ordered, highly packed, and clonal biofilm structure of V. cholerae can be disrupted if V. cholerae cells are directly adjacent to E. coli cells at the start of biofilm growth. When this occurs, the two species become intermixed, and the resulting disordered cell groups do not block predator entry. Because biofilm cell group structure depends on initial cell distributions at the start of prey biofilm growth, the surface colonization dynamics have a dramatic impact on the eventual multispecies biofilm architecture, which in turn determines to what extent both species survive exposure to B. bacteriovorus.


Subject(s)
Bdellovibrio bacteriovorus , Escherichia coli , Animals , Predatory Behavior , Biofilms , Ecology
6.
Antibiotics (Basel) ; 10(7)2021 Jul 03.
Article in English | MEDLINE | ID: mdl-34356731

ABSTRACT

It was previously demonstrated that predatory bacteria are able to efficiently eliminate Gram-negative pathogens including antibiotic-resistant and biofilm-associated bacteria. In this proof-of-concept study we evaluated whether two species of predatory bacteria, Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus, were able to alter the survival of Gram-negative pathogens on the ocular surface. Clinical keratitis isolates of Pseudomonas aeruginosa (strain PAC) and Serratia marcescens (strain K904) were applied to the ocular surface of NZW rabbits followed by application of predatory bacteria. At time intervals, surviving pathogenic bacteria were enumerated. In addition, B. bacteriovorus and S. marcescens were applied to porcine organ culture corneas under contact lenses, and the ocular surface was examined by scanning electron microscopy. The ocular surface epithelial layer of porcine corneas exposed to S. marcescens, but not B. bacteriovorus was damaged. Using this model, neither pathogen could survive on the rabbit ocular surface for longer than 24 h. M. aeruginosavorus correlated with a more rapid clearance of P. aeruginosa but not S. marcescens from rabbit eyes. This study supports previous evidence that predatory bacteria are well tolerated by the cornea, but suggest that predatory bacteria do not considerably change the ability of the ocular surface to clear the tested Gram-negative bacterial pathogens from the ocular surface.

7.
Curr Biol ; 31(12): 2643-2651.e3, 2021 06 21.
Article in English | MEDLINE | ID: mdl-33826904

ABSTRACT

The bacterium Bdellovibrio bacteriovorus attaches to the exterior of a Gram-negative prey cell, enters the periplasm, and harvests resources to replicate before lysing the host to find new prey.1-7 Predatory bacteria such as this are common in many natural environments,8-13 as are groups of matrix-bound prey cell clusters, termed biofilms.14-16 Despite the ubiquity of both predatory bacteria and biofilm-dwelling prey, the interaction between B. bacteriovorus and prey inside biofilms has received little attention and has not yet been studied at the micrometer scale. Filling this knowledge gap is critical to understanding bacterial predator-prey interaction in nature. Here we show that B. bacteriovorus is able to attack biofilms of the pathogen Vibrio cholerae, but only up until a critical maturation threshold past which the prey biofilms are protected from their predators. Using high-resolution microscopy and detailed spatial analysis, we determine the relative contributions of matrix secretion and cell-cell packing of the prey biofilm toward this protection mechanism. Our results demonstrate that B. bacteriovorus predation in the context of this protection threshold fundamentally transforms the sub-millimeter-scale landscape of biofilm growth, as well as the process of community assembly as new potential biofilm residents enter the system. We conclude that bacterial predation can be a key factor influencing the spatial community ecology of microbial biofilms.


Subject(s)
Bdellovibrio bacteriovorus , Vibrio cholerae , Animals , Biofilms , Predatory Behavior
8.
FEMS Microbiol Ecol ; 97(5)2021 04 13.
Article in English | MEDLINE | ID: mdl-33739375

ABSTRACT

Bdellovibrio and like organisms (BALOs) are obligate predatory bacteria commonly encountered in the environment. In dual predator-prey cultures, prey accessibility ensures optimal feeding and replication and rapid BALO population growth. However, the environmental prey landscape is complex, as it also incorporates non-prey cells and other particles. These may act as decoys, generating unproductive encounters which in turn may affect both predator and prey population dynamics. In this study, we hypothesized that increasing decoy:prey ratios would bring about increasing costs on the predator's reproductive fitness. We also tested the hypothesis that different BALOs and decoys would have different effects. To this end, we constructed prey landscapes including periplasmic or epibiotic predators including two types of decoy under a large range of initial decoy:prey ratio, and mixed cultures containing multiple predators and prey. We show that as decoy:prey ratios increase, the maximal predator population sizes is reduced and the time to reach it significantly increases. We found that BALOs spent less time handling non-prey (including superinfection-immune invaded prey) than prey cells, and did not differentiate between efficient and less efficient prey. This may explain why in multiple predator and prey cultures, less preferred prey appear to act as decoy.


Subject(s)
Bdellovibrio , Gammaproteobacteria
9.
ISME J ; 15(1): 109-123, 2021 01.
Article in English | MEDLINE | ID: mdl-32884113

ABSTRACT

The small size of bacterial cells necessitates rapid adaption to sudden environmental changes. In Bdellovibrio bacteriovorus, an obligate predator of bacteria common in oligotrophic environments, the non-replicative, highly motile attack phase (AP) cell must invade a prey to ensure replication. AP cells swim fast and respire at high rates, rapidly consuming their own contents. How the predator survives in the absence of prey is unknown. We show that starvation for prey significantly alters swimming patterns and causes exponential decay in prey-searching cells over hours, until population-wide swim-arrest. Swim-arrest is accompanied by changes in energy metabolism, enabling rapid swim-reactivation upon introduction of prey or nutrients, and a sweeping change in gene expression and gene regulation that largely differs from those of the paradigmatic stationary phase. Swim-arrest is costly as it imposes a fitness penalty in the form of delayed growth. We track the control of the swim arrest-reactivation process to cyclic-di-GMP (CdG) effectors, including two motility brakes. CRISPRi transcriptional inactivation, and in situ localization of the brakes to the cell pole, demonstrated their essential role for effective survival under prey-induced starvation. Thus, obligate predators evolved a unique CdG-controlled survival strategy, enabling them to sustain their uncommon lifestyle under fluctuating prey supply.


Subject(s)
Bdellovibrio bacteriovorus , Bdellovibrio , Cell Cycle
10.
Microbiology (Reading) ; 166(1): 34-43, 2020 01.
Article in English | MEDLINE | ID: mdl-31585061

ABSTRACT

Microbial biofilms are ubiquitous in drinking water systems, yet our understanding of drinking water biofilms lags behind our understanding of those in other environments. Here, a six-member model bacterial community was used to identify the interactions and individual contributions of each species to community biofilm formation. These bacteria were isolated from the International Space Station potable water system and include Cupriavidus metallidurans, Chryseobacterium gleum, Ralstonia insidiosa, Ralstonia pickettii, Methylorubrum (Methylobacterium) populi and Sphingomonas paucimobilis, but all six species are common members of terrestrial potable water systems. Using reconstituted assemblages, from pairs to all 6 members, community biofilm formation was observed to be robust to the absence of any single species and only removal of the C. gleum/S. paucimobilis pair, out of all 15 possible 2-species subtractions, led to loss of community biofilm formation. In conjunction with these findings, dual-species biofilm formation assays supported the view that the contribution of C. gleum to community biofilm formation was dependent on synergistic biofilm formation with either R. insidiosa or C. metallidurans. These data support a model of multiple, partially redundant species interactions to generate robustness in biofilm formation. A bacteriophage and multiple predatory bacteria were used to test the resilience of the community to the removal of individual members in situ, but the combination of precise and substantial depletion of a single target species was not achievable. We propose that this assemblage can be used as a tractable model to understand the molecular bases of the interactions described here and to decipher other functions of drinking water biofilms.


Subject(s)
Biofilms/growth & development , Drinking Water/microbiology , Microbial Interactions/physiology , Microbiota , Bacteria/classification , Bacteria/growth & development , Bacteria/isolation & purification , Bacteria/virology , Bacteriophages/physiology , Spacecraft , Water Microbiology
11.
mBio ; 10(3)2019 06 11.
Article in English | MEDLINE | ID: mdl-31186325

ABSTRACT

Bdellovibrio bacteriovorus is a bacterial predator capable of killing and replicating inside most Gram-negative bacteria, including antibiotic-resistant pathogens. Despite growing interest in this organism as a potential therapeutic, many of its genes remain uncharacterized. Here, we perform a high-throughput genetic screen with B. bacteriovorus using transposon sequencing (Tn-seq) to explore the genetic requirements of predation. Two hundred one genes were deemed essential for growth in the absence of prey, whereas over 100 genes were found to be specifically required for predative growth on the human pathogens Vibrio cholerae and Escherichia coli in both planktonic and biofilm states. To further this work, we created an ordered-knockout library in B. bacteriovorus and developed new high-throughput techniques to characterize the mutants by their stage of deficiency in the predator life cycle. Using microscopy and flow cytometry, we confirmed 10 mutants defective in prey attachment and eight mutants defective in prey rounding. The majority of these genes are hypothetical and previously uncharacterized. Finally, we propose new nomenclature to group B. bacteriovorus mutants into classes based on their stage of predation defect. These results contribute to our basic understanding of bacterial predation and may be useful for harnessing B. bacteriovorus to kill harmful pathogens in the clinical setting.IMPORTANCEBdellovibrio bacteriovorus is a predatory bacterium that can kill a wide range of Gram-negative bacteria, including many human pathogens. Given the global rise of antibiotic resistance and dearth of new antibiotics discovered in the past 30 years, this predator has potential as an alternative to traditional antibiotics. For many years, B. bacteriovorus research was hampered by a lack of genetic tools, and the genetic mechanisms of predation have only recently begun to be established. Here, we comprehensively identify and characterize predator genes required for killing bacterial prey, as well as genes that interfere in this process, which may allow us to design better therapeutic predators. Based on our study, we and other researchers may ultimately be able to genetically engineer strains that have improved killing rates, target specific species of prey, or preferentially target prey in the planktonic or biofilm state.


Subject(s)
Bdellovibrio bacteriovorus/growth & development , Bdellovibrio bacteriovorus/genetics , DNA Transposable Elements , Genes, Viral , Biofilms , Escherichia coli/virology , Gene Knockout Techniques , High-Throughput Nucleotide Sequencing , Mutation , Vibrio cholerae/virology
12.
Microorganisms ; 7(1)2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30577606

ABSTRACT

Multi-drug resistant bacterial infections are a serious threat to global public health. Changes in treatment modalities and prudent use of antibiotics can assist in reducing the threat, but new approaches are also required for untreatable cases. The use of predatory bacteria, such as Bdellovibrio bacteriovorus, is among the novel approaches being considered as possible therapeutics for antibiotic resistant and/or unidentified bacterial infections. Previous studies have examined the feasibility of using predatory bacteria to reduce colony-forming units (CFUs) in the lungs of rats exposed to lethal doses of Klebsiella pneumoniae; here we apply the approach to the Tier 1 select agent Yersinia pestis, and show that three doses of B. bacteriovorus introduced every six hours reduces the number of CFUs of Y. pestis in the lungs of inoculated mice by 86% after 24 h of infection. These experiments further demonstrate that predatory bacteria may serve to combat Gram negative bacterial infections, including those considered potential bioweapon agents, in the future.

13.
Nat Commun ; 9(1): 4757, 2018 11 12.
Article in English | MEDLINE | ID: mdl-30420597

ABSTRACT

The bacterial predator Bdellovibrio bacteriovorus is evolved to attack and kill other bacteria, including the human intestinal pathogen Vibrio cholerae. Although B. bacteriovorus exhibit a broad prey range, little is known about the genetic determinants of prey resistance and sensitivity. Here we perform a genetic screen on V. cholerae and identify five pathways contributing to predation susceptibility. We find that the essential virulence regulators ToxR/S increase susceptibility to predation, as mutants of these genes are more resistant to predation. We observe by flow cytometry that lipopolysaccharide is a critical defense, as mutants lacking O-antigen are rapidly attacked by predatory B. bacteriovorus. Using polymer solutions to alter media viscosity, we find that when B. bacteriovorus attacks motile V. cholerae, increased drag forces slow its ability to prey. These results provide insights into key prey resistance mechanisms, and may be useful in the application of B. bacteriovorus in treating infections.


Subject(s)
Bdellovibrio bacteriovorus/physiology , Vibrio cholerae/physiology , Bacterial Adhesion , Bdellovibrio bacteriovorus/genetics , Biomechanical Phenomena , Genes, Bacterial , Microbial Viability , Movement , Mutation/genetics , O Antigens/metabolism , Reproducibility of Results , Viscosity
14.
Sci Rep ; 8(1): 14025, 2018 09 19.
Article in English | MEDLINE | ID: mdl-30232396

ABSTRACT

Micavibrio aeruginosavorus is an obligate Gram-negative predatory bacterial species that feeds on other Gram-negative bacteria by attaching to the surface of its prey and feeding on the prey's cellular contents. In this study, Serratia marcescens with defined mutations in genes for extracellular cell structural components and secreted factors were used in predation experiments to identify structures that influence predation. No change was measured in the ability of the predator to prey on S. marcescens flagella, fimbria, surface layer, prodigiosin and phospholipase-A mutants. However, higher predation was measured on S. marcescens metalloprotease mutants. Complementation of the metalloprotease gene, prtS, into the protease mutant, as well as exogenous addition of purified serralysin metalloprotease, restored predation to wild type levels. Addition of purified serralysin also reduced the ability of M. aeruginosavorus to prey on Escherichia coli. Incubating M. aeruginosavorus with purified metalloprotease was found to not impact predator viability; however, pre-incubating prey, but not the predator, with purified metalloprotease was able to block predation. Finally, using flow cytometry and fluorescent microscopy, we were able to confirm that the ability of the predator to bind to the metalloprotease mutant was higher than that of the metalloprotease producing wild-type. The work presented in this study shows that metalloproteases from S. marcescens could offer elevated protection from predation.


Subject(s)
Gram-Negative Bacteria/pathogenicity , Metalloproteases/genetics , Serratia marcescens/growth & development , Bacterial Proteins/genetics , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Metalloproteases/metabolism , Microbial Viability , Mutation , Serratia marcescens/enzymology , Serratia marcescens/genetics
15.
Res Microbiol ; 169(4-5): 237-243, 2018.
Article in English | MEDLINE | ID: mdl-29751066

ABSTRACT

The use of predatory bacteria as a potential live therapeutic to control human infection is gaining increased attention. Earlier work with Micavibrio spp. and Bdellovibrio spp. has demonstrated the ability of these predators to control drug-resistant Gram-negative pathogens, Tier-1 select agents and biofilms. Additional studies also confirmed that introducing high doses of the predators into animals does not negatively impact animal well-being and might assist in reducing bacterial burden in vivo. The survival of predators requires extreme proximity to the prey cell, which might bring about horizontal transfer of genetic material, such as genes encoding for pathogenic genetic islands that would indirectly facilitate the spread of genetic material to other organisms. In this study, we examined the genetic makeup of several lab isolates of the predators Bdellovibriobacteriovorus and Micavibrioaeruginosavorus that were cultured repeatedly and stored over a course of 13 years. We also conducted controlled experiments in which the predators were sequentially co-cultured on Klebsiella pneumoniae followed by genetic analysis of the predator. In both cases, we saw little genetic variation and no evidence of horizontally transferred chromosomal DNA from the prey during predator-prey interaction. Culturing the predators repeatedly did not cause any change in predation efficacy.


Subject(s)
Alphaproteobacteria/genetics , Bdellovibrio bacteriovorus/genetics , DNA, Bacterial/genetics , Genetic Variation/genetics , Alphaproteobacteria/isolation & purification , Antibiosis/genetics , Bdellovibrio bacteriovorus/isolation & purification , Biological Control Agents , Coculture Techniques , Gene Transfer, Horizontal , Gram-Negative Bacterial Infections/therapy , Humans , Klebsiella pneumoniae/genetics
16.
Res Microbiol ; 169(1): 52-55, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28919044

ABSTRACT

The increase in multidrug-resistant Gram-negative bacterial infections has forced the reintroduction of antibiotics such as colistin. However, the spread of the plasmid-borne mcr-1 colistin resistance gene have moved us closer to an era of untreatable Gram-negative infections. To evaluate whether predatory bacteria could be used as a potential therapeutic to treat this upcoming threat, the ability of Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus to prey on several clinically relevant mcr-1-positive, colistin-resistant isolates was evaluated. No change in the ability of the predators to prey on free swimming and biofilms of prey cells harboring mcr-1 was measured, as compared to their mcr-1 negative strain.


Subject(s)
Alphaproteobacteria/physiology , Anti-Bacterial Agents/pharmacology , Antibiosis , Bdellovibrio bacteriovorus/physiology , Colistin/pharmacology , Escherichia coli Infections/microbiology , Escherichia coli/drug effects , Drug Resistance, Bacterial , Escherichia coli/genetics , Escherichia coli/physiology , Escherichia coli Infections/therapy , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Humans
17.
Sci Rep ; 7(1): 1864, 2017 05 12.
Article in English | MEDLINE | ID: mdl-28500337

ABSTRACT

The proteobacteria Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus are obligate predators of Gram-negative bacteria, and have been proposed to be used to treat multidrug-resistant bacterial infections. The ability of predatory bacteria to reduce bacterial burden in vivo within the lungs of rats has been demonstrated, but it was unknown if predatory bacteria can attenuate systemic bacterial burden administered intravenously. In this study, we first assessed the safety of intravenous inoculation of predatory bacteria in rats. No rat morbidity or adverse histopathology of various organs due to predatory bacteria administration was observed. An increase in proinflammatory cytokines (TNFα and KC/GRO) was observed at two hours post-inoculation; however, cytokines returned to baseline levels by 18 hours. Furthermore, bacterial dissemination analysis demonstrated that predatory bacteria were efficiently cleared from the host by 20 days post-injection. To determine whether predatory bacteria could reduce bacterial burden in vivo, Klebsiella pneumoniae was injected into the tail veins of rats and followed with multiple doses of predatory bacteria over 16 or 24 hours. Predatory bacteria were unable to significantly reduce K. pneumoniae burden in the blood or prevent dissemination to other organs. The results suggest that predatory bacteria may not be effective for treatment of acute blood infections.


Subject(s)
Bacteria , Bacterial Infections/microbiology , Bacterial Infections/pathology , Animals , Bacterial Infections/immunology , Enzyme-Linked Immunosorbent Assay , Host-Pathogen Interactions , Male , Morbidity , Rats
19.
Sci Rep ; 7: 43483, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28262674

ABSTRACT

Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus are Gram-negative proteobacteria that are obligate predators of other Gram-negative bacteria and are considered potential alternatives to antibiotics. Most studies focusing on predatory bacteria have been performed in vitro, thus the effect of predatory bacteria on a live host, including the impact on the ecology of the native microbiota, has yet to be fully examined. In this study, intrarectal inoculations of Sprague-Dawley rats with predatory bacteria were performed. Additionally, feces were collected for seven days post-inoculation to determine the effect on gut bacterial diversity. Rat colonic tissue exhibited no abnormal histopathological effects due to predatory bacteria. A modest increase in pro-inflammatory cytokines was measured in the colons of rats inoculated with predatory bacteria by 24 and 48 hours, with all but IL-13 returning to baseline by seven days. V4 16S rRNA gene sequencing of fecal DNA demonstrated minimal shifts in taxonomic representation over the week due to predatory bacteria. Changes in bacterial populations due to exposure to B. bacteriovorus are predicted to contribute to health, however, an overgrowth of Prevotella was observed due to exposure to M. aeruginosavorus. This study further addresses safety concerns associated with the potential use of predatory bacteria to treat infections.


Subject(s)
Alphaproteobacteria/physiology , Antibiosis , Bdellovibrio bacteriovorus/physiology , Colon/microbiology , Gastrointestinal Microbiome/physiology , RNA, Ribosomal, 16S/genetics , Administration, Rectal , Animals , Feces/chemistry , Feces/microbiology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/growth & development , Klebsiella pneumoniae/pathogenicity , Male , Phylogeny , RNA, Ribosomal, 16S/classification , Rats , Rats, Sprague-Dawley
20.
J R Soc Interface ; 14(126)2017 01.
Article in English | MEDLINE | ID: mdl-28053112

ABSTRACT

Most bacterial habitats are topographically complex in the micro scale. Important examples include the gastrointestinal and tracheal tracts, and the soil. Although there are myriad theoretical studies that explore the role of spatial structures on antagonistic interactions (predation, competition) among animals, there are many fewer experimental studies that have explored, validated and quantified their predictions. In this study, we experimentally monitored the temporal dynamic of the predatory bacterium Bdellovibrio bacteriovorus, and its prey, the bacterium Burkholderia stabilis in a structured habitat consisting of sand under various regimes of wetness. We constructed a dynamic model, and estimated its parameters by further developing the direct integral method, a novel estimation procedure that exploits the separability of the states and parameters in the model. We also verified that one of our parameter estimates was consistent with its known, directly measured value from the literature. The ability of the model to fit the data combined with realistic parameter estimates indicate that bacterial predation in the sand can be described by a relatively simple model, and stress the importance of prey refuge on predation dynamics in heterogeneous environments.


Subject(s)
Bdellovibrio bacteriovorus/physiology , Burkholderia/physiology , Food Chain , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...