Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 61(23): 8729-8745, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35638247

ABSTRACT

Chalcogen-bonding interactions have recently gained considerable attention in the field of synthetic chemistry, structure, and bonding. Here, three organo-spiroselenuranes, having a Se(IV) center with a strong intramolecular Se···N chalcogen-bonded interaction, have been isolated by the oxidation of the respective bis(2-benzamide) selenides derived from an 8-aminoquinoline ligand. Further, the synthesized spiroselenuranes, when assayed for their antioxidant activity, show disproportionation of hydrogen peroxide into H2O and O2 with first-order kinetics with respect to H2O2 for the first time by any organoselenium molecules as monitored by 1H NMR spectroscopy. Electron-donating 5-methylthio-benzamide ring-substituted spiroselenurane disproportionates hydrogen peroxide at a high rate of 15.6 ± 0.4 × 103 µM min-1 with a rate constant of 8.57 ± 0.50 × 10-3 s-1, whereas 5-methoxy and unsubstituted-benzamide spiroselenuranes catalyzed the disproportionation of H2O2 at rates of 7.9 ± 0.3 × 103 and 2.9 ± 0.3 × 103 µM min-1 with rate constants of 1.16 ± 0.02 × 10-3 and 0.325 ± 0.025 × 10-3 s-1, respectively. The evolved oxygen gas from the spiroselenurane-catalyzed disproportion of H2O2 has also been confirmed by a gas chromatograph-thermal conductivity detector (GCTCD) and a portable digital polarographic dissolved O2 probe. Additionally, the synthesized spiroselenuranes exhibit thiol peroxidase antioxidant activities for the reduction of H2O2 by a benzenethiol co-reductant monitored by UV-visible spectroscopy. Next, the Se···N bonded spiroselenuranes have been explored as catalysts in synthetic oxidation iodolactonization and bromination of arenes. The synthesized spiroselenurane has activated I2 toward the iodolactonization of alkenoic acids under base-free conditions. Similarly, efficient chemo- and regioselective monobromination of various arenes with NBS catalyzed by chalcogen-bonded synthesized spiroselenuranes has been achieved. Mechanistic insight into the spiroselenuranes in oxidation reactions has been gained by 77Se NMR, mass spectrometry, UV-visible spectroscopy, single-crystal X-ray structure, and theoretical (DFT, NBO, and AIM) studies. It seems that the highly electrophilic nature of the selenium center is attributed to the presence of an intramolecular Se···N interaction and a vacant coordination site in spiroselenuranes is crucial for the activation of H2O2, I2, and NBS. The reaction of H2O2, I2, and NBS with tetravalent spiroselenurane would lead to an octahedral-Se(VI) intermediate, which is reduced back to Se(IV) due to thermodynamic instability of selenium in its highest oxidation state and the presence of a strong intramolecular N-donor atom.


Subject(s)
Hydrogen Peroxide , Selenium , Antioxidants/chemistry , Benzamides , Catalysis , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Selenium/chemistry
2.
Dalton Trans ; 48(21): 7249-7260, 2019 May 28.
Article in English | MEDLINE | ID: mdl-30747185

ABSTRACT

A copper catalyzed efficient synthetic method has been developed to access bis(N-arylbenzamide) selenides from 2-halo-N-arylbenzamide substrates and disodium selenide in HMPA at 110 °C. The developed protocol tolerates substituents in both N-aryl and benzamide rings of the 2-halobenzamide substrates and provides an array of bis(N-arylbenzamide) selenides in practical yields. The resulting selenides were transformed into hypervalent spirodiazaselenuranes by oxidation using aqueous hydrogen peroxide. (N-(1-Naphthyl)) spirodiazaselenurane is also structurally characterized by a single crystal X-ray study. Hydroxy-substituted spiroselenuranes have been prepared by careful demethylation of methoxy-substituted selenides followed by oxidation by hydrogen peroxide. Antioxidant properties for the decomposition of hydrogen peroxide and for the deactivation of radicals of hydroxy-substituted spiroselenuranes have been studied by the thiol assay and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Both hydroxy-substituted spiroselenuranes exhibit dual mimic functions of glutathione peroxidase (GPx) selenoenzyme and α-tocopherol for decomposition of hydrogen peroxide and deactivation of radicals, respectively.

3.
Chem Sci ; 8(9): 6633-6644, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28989690

ABSTRACT

Generally, oxy-trifluoromethylation in olefins is achieved using oxidants and transition metal catalysts. However, labile olefins remain unexplored due to their incompatibility with harsh reaction conditions. Here, unprecedented light-induced oxidant and metal-free tandem radical cyclization-trifluoromethylation and dehydrogenative oxygenation of 1,6-enynes have been achieved using a photoredox catalyst, CF3SO2Na, and phenanthrene-9,10-dione (PQ), Langlois' reagent (CF3SO2Na) and water as the oxygen source. This benign protocol allows for access to various CF3-containing C3-aryloyl/acylated benzofurans, benzothiophenes, and indoles. Moreover, the oxidized undesired products, which are inherently formed by the cleavage of the vinylic carbon and heteroatom bond, have been circumvented under oxidant free conditions. The mechanistic investigations by UV-visible and ESR spectroscopy, electrochemical studies, isotope labelling and density functional theory (DFT) suggest that light induced PQ produced a CF3 radical from CF3SO2Na. The generated CF3 radical adds to the alkene, followed by cyclization, to provide a vinylic radical that transfers an electron to PQ and generates a vinylic cation. Alternatively, electron transfer may occur from the CF3-added alkene moiety, forming a carbocation, which would undergo cationic cyclization to generate a vinylic carbocation. The subsequent addition of water to the vinylic cation, followed by the elimination of hydrogen gas, led to the formation of trifluoromethylated C3-aryloyl/acylated heterocycles.

4.
Org Biomol Chem ; 14(39): 9210-9214, 2016 Oct 04.
Article in English | MEDLINE | ID: mdl-27722465

ABSTRACT

Here we describe a potassium tert-butoxide-mediated regioselective direct C-S bond formation at the C(sp3)-H position of nitrotoluenes with disulfides in DMSO at room temperature. The developed reaction generated, in good yields, various dithioacetals having OMe, halogen, and NH2 functionalities at various positions of the arene rings of the disulfides. Interestingly, in the absence of nitrotoluene, diaryl disulfides and diselenides underwent one-carbon homologation to form dithioacetals and diselenoacetals. Synthesized dithioacetals were transformed into 4-nitrobenzaldehyde and 7-(bis(phenylthio)methyl)-1H-indole.

5.
Indian J Crit Care Med ; 20(6): 371-3, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27390465

ABSTRACT

idiopathic CD4(+) lymphocytopenia (ICL) is a rare disorder characterized by the presence of depleted CD4 cell line without the presence of HIV infection. Slight male preponderance is noticed and is usually seen in the middle age group. Opportunistic infections are the reason for their discovery and here we describe a case where a man was diagnosed as having Pneumocystis jiroveci pneumonia and oral candidiasis.

6.
Dalton Trans ; 45(4): 1443-54, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26674056

ABSTRACT

Potassium salts of phenolate based polydentate xanthate ligands 4,4'-bis(2-dithiocarbonatobenzylideneamino)diphenyl ether () and 4,4'-bis(2-dithiocarbonatonaphthylmethylideneamino)diphenyl ether () have been synthesized and characterized, prior to use. The reaction of or with M(OAc)2 in Et3N affords access to a rare series of binuclear metallomacrocyclic xanthate complexes of the type [M2-µ(2)-bis-(κ(2)S,S-xan(1)/xan(2))] () which quickly forms [2 : 2] binuclear N,O-bidentate Schiff base macrocyclic complexes of the type [M2-µ(2)-bis-(κ(2)N,O-L(1)/L(2))] ( = 4,4'-bis(2-hydroxybenzylideneamino)diphenyl ether, = 4,4'-bis(2-hydroxynaphthylmethylidene-amino)diphenyl ether) via evolution of CS2 in solution. The compounds were characterized by microanalysis, relevant spectroscopy (FT-IR, UV-visible), mass spectrometry (ESI-MS), and powder and single crystal XRD techniques. In vitro anticancer activity of all the compounds was evaluated against HEP 3B (hepatoma) and IMR 32 (neuroblastoma) by the MTT assay. Remarkably, the binuclear copper(ii) xanthate complexes were found to be extremely active against both the cell lines (IC50: 8.1 ± 0.8 µM (), 8.8 ± 1.7 µM () against HEP 3B and 1.9 ± 0.3 µM () and 7.3 ± 0.6 µM () against IMR 32) and this projects them as good candidates for potent antitumor agents and the IC50 values confirm their better potency than the reference drug cisplatin. The flow-cytometric density plot illustrates the induction of apoptosis in HEP 3B and IMR 32 cells after treatment with , , , and .


Subject(s)
Antineoplastic Agents/pharmacology , Cobalt/pharmacology , Copper/pharmacology , Macrocyclic Compounds/pharmacology , Organometallic Compounds/pharmacology , Phenols/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cobalt/chemistry , Copper/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Molecular Structure , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Phenols/chemistry , Schiff Bases/chemistry , Schiff Bases/pharmacology , Structure-Activity Relationship , Tumor Cells, Cultured
8.
Eur J Med Chem ; 74: 552-61, 2014 Mar 03.
Article in English | MEDLINE | ID: mdl-24531196

ABSTRACT

4,4'-Diaminodiphenyl ether was selected as a lead compound to prepare a novel series of bisimine derivatives bearing polyaromatic hydrocarbon substituents and their reduced benzyl forms. The new compounds were structurally characterized by microanalysis, mass, IR, (1)H, (13)C, DEPT-135, HSQC, g-COSY NMR spectroscopy, UV-visible, fluorescence spectrophotometers and by thermogravimetric analysis. The antitumor activity of these derivatives was evaluated in-vitro against Hep 3B and IMR 32 by the MTT assay and the results were compared with cisplatin. Interestingly, some compounds were found extremely active against both the cell lines and proved to be more potent as cytotoxic agents than cisplatin. Morphological evidences suggest the induction of apoptosis and explain the mode of action of these derivatives as antitumor agents.


Subject(s)
Phenyl Ethers/chemistry , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Phenyl Ethers/chemical synthesis , Phenyl Ethers/pharmacology , Spectrum Analysis , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...