Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells Transl Med ; 9(9): 959-964, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32585084

ABSTRACT

A major goal for the field of regenerative medicine is to enable the safe and durable engraftment of allogeneic tissues and organs. In contrast to autologous therapies, allogeneic therapies can be produced for many patients, thus reducing costs and increasing availability. However, the need to overcome strong immune system barriers to engraftment poses a significant biological challenge to widespread adoption of allogeneic therapies. While the use of powerful immunosuppressant drugs has enabled the engraftment of lifesaving organ transplants, these drugs have serious side effects and often the organ is eventually rejected by the recipient immune system. Two conceptually different strategies have emerged to enable durable engraftment of allogeneic therapies in the absence of immune suppression. One strategy is to induce immune tolerance of the transplant, either by creating "mixed chimerism" in the hematopoietic system, or by retraining the immune system using modified thymic epithelial cells. The second strategy is to evade the immune system altogether, either by engineering the donor tissue to be "invisible" to the immune system, or by sequestering the donor tissue in an immune impermeable barrier. We give examples of research funded by the California Institute for Regenerative Medicine (CIRM) in each of these areas, ranging from early discovery-stage work through clinical trials. The advancements that are being made in this area hold promise that many more patients will be able to benefit from regenerative medicine therapies in the future.


Subject(s)
Immune Evasion , Immune Tolerance , Regenerative Medicine , Animals , Cell Engineering , Cells, Immobilized/cytology , Humans , Transplantation, Homologous
2.
Stem Cells Transl Med ; 6(10): 1823-1828, 2017 10.
Article in English | MEDLINE | ID: mdl-28791807

ABSTRACT

The mission of the California Institute of Regenerative Medicine (CIRM) is to accelerate treatments to patients with unmet medical needs. In September 2016, CIRM sponsored a workshop held at the University of California, Los Angeles, to discuss regenerative medicine approaches for treatment of lung diseases and to identify the challenges remaining for advancing such treatments to the clinic and market approval. Workshop participants discussed current preclinical and clinical approaches to regenerative medicine in the lung, as well as the biology of lung stem cells and the role of stem cells in the etiology of various lung diseases. The outcome of this effort was the recognition that whereas transient cell delivery approaches are leading the way in the clinic, recent advances in the understanding of lung stem cell biology, in vitro and in vivo disease modeling, gene editing and replacement methods, and cell engraftment approaches raise the prospect of developing cures for some lung diseases in the foreseeable future. In addition, advances in in vitro modeling using lung organoids and "lung on a chip" technology are setting the stage for high quality small molecule drug screening to develop treatments for lung diseases with complex biology. Stem Cells Translational Medicine 2017;6:1823-1828.


Subject(s)
Congresses as Topic , Lung Diseases/therapy , Regenerative Medicine/methods , Genetic Therapy/methods , Humans , Stem Cell Transplantation/methods , Tissue Engineering/methods
3.
Stem Cells Transl Med ; 5(1): 1-7, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26607174

ABSTRACT

UNLABELLED: The aging population in the U.S. and other developed countries has led to a large increase in the number of patients suffering from degenerative diseases. Transplantation surgery has been a successful therapeutic option for certain patients; however, the availability of suitable donor organs and tissues significantly limits the number of patients who can benefit from this approach. Regenerative medicine has witnessed numerous recent and spectacular advances, making the repair or replacement of dysfunctional organs and tissues an achievable goal. Public-private partnerships and government policies and incentives would further catalyze the development of universally available donor tissues, resulting in broad medical and economic benefits. This article describes a Regenerative Medicine Grand Challenge that the Alliance for Regenerative Medicine recently shared with the White House's Office of Science and Technology Policy in response to a White House call to action in scientific disciplines suggesting that the development of "universal donor tissues" should be designated as a Regenerative Medicine Grand Challenge. Such a designation would raise national awareness of the potential of regenerative medicine to address the unmet needs of many diseases and would stimulate the scientific partnerships and investments in technology needed to expedite this goal. Here we outline key policy changes and technological challenges that must be addressed to achieve the promise of a major breakthrough in the treatment of degenerative disease. A nationalized effort and commitment to develop universal donor tissues could realize this goal within 10 years and along the way result in significant innovation in manufacturing technologies. SIGNIFICANCE: Regenerative therapies, in which dysfunctional or degenerating cells, tissues, or organs are repaired or replaced, have the potential to cure chronic degenerative diseases. Such treatments are limited by a shortage of donor organs and tissues and the need for immune suppression to prevent rejection. This article proposes a 21st Century Grand Challenge that would address this significant medical need by coordinating a national effort to convene the multidisciplinary expertise needed to manufacture functional and engraftable cells, tissues, or organs that could be made available to any patient without significant risk of rejection-so-called universal donor tissues.


Subject(s)
Neurodegenerative Diseases/therapy , Regeneration , Regenerative Medicine/methods , Humans , Neurodegenerative Diseases/epidemiology , Regenerative Medicine/standards , Regenerative Medicine/trends , United States/epidemiology
4.
Stem Cells Transl Med ; 4(3): 207-10, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25637191

ABSTRACT

Despite available medical therapy and organ transplantation, a significant unmet medical need remains for the treatment of liver failure, end-stage liver disease, and liver-based inborn errors of metabolism. Liver cell transplantation has the potential to address this need; however, the field is in search of a suitable cell therapeutic. The ability to reproducibly generate a well-characterized source of engraftable and functional liver cells has continued to be a challenge. Recent progress with tissue-derived stem/progenitor cells and pluripotent stem cell-derived cells now offers the field the opportunity to address this challenge.


Subject(s)
Cell- and Tissue-Based Therapy , Liver Diseases/therapy , Pluripotent Stem Cells/transplantation , Stem Cell Transplantation , Cell- and Tissue-Based Therapy/methods , Cell- and Tissue-Based Therapy/trends , Humans
5.
Genes Dev ; 24(13): 1403-17, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20595232

ABSTRACT

The sterol regulatory element-binding protein (SREBP) transcription factor family is a critical regulator of lipid and sterol homeostasis in eukaryotes. In mammals, SREBPs are highly active in the fed state to promote the expression of lipogenic and cholesterogenic genes and facilitate fat storage. During fasting, SREBP-dependent lipid/cholesterol synthesis is rapidly diminished in the mouse liver; however, the mechanism has remained incompletely understood. Moreover, the evolutionary conservation of fasting regulation of SREBP-dependent programs of gene expression and control of lipid homeostasis has been unclear. We demonstrate here a conserved role for orthologs of the NAD(+)-dependent deacetylase SIRT1 in metazoans in down-regulation of SREBP orthologs during fasting, resulting in inhibition of lipid synthesis and fat storage. Our data reveal that SIRT1 can directly deacetylate SREBP, and modulation of SIRT1 activity results in changes in SREBP ubiquitination, protein stability, and target gene expression. In addition, chemical activators of SIRT1 inhibit SREBP target gene expression in vitro and in vivo, correlating with decreased hepatic lipid and cholesterol levels and attenuated liver steatosis in diet-induced and genetically obese mice. We conclude that SIRT1 orthologs play a critical role in controlling SREBP-dependent gene regulation governing lipid/cholesterol homeostasis in metazoans in response to fasting cues. These findings may have important biomedical implications for the treatment of metabolic disorders associated with aberrant lipid/cholesterol homeostasis, including metabolic syndrome and atherosclerosis.


Subject(s)
Down-Regulation , Fasting/physiology , Sirtuin 1/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 2/metabolism , Acetylation , Animals , Benzamides/pharmacology , Caenorhabditis elegans , Cell Line , Cholesterol/biosynthesis , Down-Regulation/drug effects , HeLa Cells , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Lipids/biosynthesis , Mice , Naphthols/pharmacology , Niacinamide/pharmacology , Protein Stability/drug effects , Sirtuins/antagonists & inhibitors
6.
Nature ; 419(6904): 312-6, 2002 Sep 19.
Article in English | MEDLINE | ID: mdl-12239571

ABSTRACT

Messenger RNA regulation is a critical mode of controlling gene expression. Regulation of mRNA stability and translation is linked to controls of poly(A) tail length. Poly(A) lengthening can stabilize and translationally activate mRNAs, whereas poly(A) removal can trigger degradation and translational repression. Germline granules (for example, polar granules in flies, P granules in worms) are ribonucleoprotein particles implicated in translational control. Here we report that the Caenorhabditis elegans gene gld-2, a regulator of mitosis/meiosis decision and other germline events, encodes the catalytic moiety of a cytoplasmic poly(A) polymerase (PAP) that is associated with P granules in early embryos. Importantly, the GLD-2 protein sequence has diverged substantially from that of conventional eukaryotic PAPs, and lacks a recognizable RRM (RNA recognition motif)-like domain. GLD-2 has little PAP activity on its own, but is stimulated in vitro by GLD-3. GLD-3 is also a developmental regulator, and belongs to the Bicaudal-C family of RNA binding proteins. We suggest that GLD-2 is the prototype for a class of regulatory cytoplasmic PAPs that are recruited to specific mRNAs by a binding partner, thereby targeting those mRNAs for polyadenylation and increased expression.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/enzymology , Cytoplasm/enzymology , Polynucleotide Adenylyltransferase/genetics , Polynucleotide Adenylyltransferase/metabolism , Amino Acid Sequence , Animals , Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/immunology , Catalytic Domain , Cloning, Molecular , Dimerization , Embryo, Nonmammalian/enzymology , Evolution, Molecular , Germ-Line Mutation/genetics , Models, Biological , Models, Molecular , Molecular Sequence Data , Poly A/metabolism , Polyadenylation , Polynucleotide Adenylyltransferase/chemistry , Polynucleotide Adenylyltransferase/immunology , Protein Binding , Protein Structure, Tertiary , RNA, Helminth/genetics , RNA, Helminth/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...