Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(12): 15457-15478, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38483821

ABSTRACT

The surface modification of magnetite nanoparticles (Fe3O4 NPs) is a promising approach to obtaining biocompatible and multifunctional nanoplatforms with numerous applications in biomedicine, for example, to fight cancer. However, little is known about the effects of Fe3O4 NP-associated reductive stress against cancer cells, especially against chemotherapy-induced drug-resistant senescent cancer cells. In the present study, Fe3O4 NPs in situ coated by dextran (Fe3O4@Dex) and glucosamine-based amorphous carbon coating (Fe3O4@aC) with potent reductive activity were characterized and tested against drug-induced senescent breast cancer cells (Hs 578T, BT-20, MDA-MB-468, and MDA-MB-175-VII cells). Fe3O4@aC caused a decrease in reactive oxygen species (ROS) production and an increase in the levels of antioxidant proteins FOXO3a, SOD1, and GPX4 that was accompanied by elevated levels of cell cycle inhibitors (p21, p27, and p57), proinflammatory (NFκB, IL-6, and IL-8) and autophagic (BECN1, LC3B) markers, nucleolar stress, and subsequent apoptotic cell death in etoposide-stimulated senescent breast cancer cells. Fe3O4@aC also promoted reductive stress-mediated cytotoxicity in nonsenescent breast cancer cells. We postulate that Fe3O4 NPs, in addition to their well-established hyperthermia and oxidative stress-mediated anticancer effects, can also be considered, if modified using amorphous carbon coating with reductive activity, as stimulators of reductive stress and cytotoxic effects in both senescent and nonsenescent breast cancer cells with different gene mutation statuses.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Hyperthermia, Induced , Magnetite Nanoparticles , Nanoparticles , Humans , Female , Cell Line, Tumor , Carbon/pharmacology , Breast Neoplasms/drug therapy , Ferric Compounds/pharmacology , Antineoplastic Agents/pharmacology , Autophagy , Magnetic Iron Oxide Nanoparticles
2.
Sci Rep ; 13(1): 21322, 2023 Dec 03.
Article in English | MEDLINE | ID: mdl-38044367

ABSTRACT

The low glass-forming ability of aluminium-based metallic glasses significantly limits their development and preparation. This paper updates the current state of knowledge by presenting the results of structural studies of two newly-developed Al79Ni5Fe5Y11 and Al79Ni11Fe5Y5 alloys with a reduced aluminium content (< 80 at.%). The alloys were produced by conventional casting (ingots) and melt-spinning (ribbons). Structural characterization was carried out for bulk ingots first, and then for the melt-spun ribbons. The ingots possessed a multiphase crystalline structure, as confirmed by X-ray diffraction and scanning electron microscopy observations. The amorphous structure of the melt-spun ribbons was determined by X-ray diffraction and transmission electron microscopy. SEM observations and EDX element maps of the cross-section of melt-spun ribbons indicated a homogeneous elemental composition. Neutron diffraction revealed the presence of nanocrystals in the amorphous matrix of the melt-spun ribbons. DSC data of the melt-spun ribbons showed exothermic events corresponding to the first crystallization at temperatures of 408 °C and 387 °C for Al79Ni5Fe5Y11 and Al79Ni11Fe5Y5, respectively.

3.
ACS Appl Mater Interfaces ; 14(37): 42057-42070, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36094407

ABSTRACT

Benefits emerging from applying high-entropy ceramics in Li-ion technology are already well-documented in a growing number of papers. However, an intriguing question may be formulated: how can the multicomponent solid solution-type material ensure stable electrochemical performance? Utilizing an example of nonequimolar Sn-based Sn0.8(Co0.2Mg0.2Mn0.2Ni0.2Zn0.2)2.2O4 high-entropy spinel oxide, we provide a comprehensive model explaining the observed very good cyclability. The material exhibits a high specific capacity above 600 mAh g-1 under a specific current of 50 mA g-1 and excellent capacity retention near 100% after 500 cycles under 200 mA g-1. The stability originates from the conversion-alloying reversible reactivity of the amorphous matrix, which forms during the first lithiation from the initial high-entropy structure, and preserves the high level of cation disorder at the atomic scale. In the altered Li-storage mechanism in relation to the simple oxides, the unwanted aggregated metallic grains are not exsolved from the anode and therefore do not form highly lithiated phases characterized by large volumetric changes. Also, the electrochemical activity of Mg from the oxide matrix can be clearly observed. Because the studied compound was prepared by a conventional solid-state route, implementation of the presented approach is facile and appears usable for any oxide anode material containing a high-entropy mixture of elements.

4.
Materials (Basel) ; 14(24)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34947399

ABSTRACT

In this work, based on the thermodynamic prediction, the comprehensive studies of the influence of Cu for Fe substitution on the crystal structure and magnetic properties of the rapidly quenched Fe85B15 alloy in the ribbon form are performed. Using thermodynamic calculations, the parabolic shape dependence of the ΔGamoprh with a minimum value at 0.6% of Cu was predicted. The ΔGamoprh from the Cu content dependence shape is also asymmetric, and, for Cu = 0% and Cu = 1.5%, the same ΔGamoprh value is observed. The heat treatment optimization process of all alloys showed that the least lossy (with a minimum value of core power losses) is the nanocomposite state of nanocrystals immersed in an amorphous matrix obtained by annealing in the temperature range of 300-330 °C for 20 min. The minimum value of core power losses P10/50 (core power losses at 1T@50Hz) of optimally annealed Fe85-xCuxB15 x = 0,0.6,1.2% alloys come from completely different crystallization states of nanocomposite materials, but it strongly correlates with Cu content and, thus, a number of nucleation sites. The TEM observations showed that, for the Cu-free alloy, the least lossy crystal structure is related to 2-3 nm short-ordered clusters; for the Cu = 0.6% alloy, only the limited value of several α-Fe nanograins are found, while for the Cu-rich alloy with Cu = 1.2%, the average diameter of nanograins is about 26 nm, and they are randomly distributed in the amorphous matrix. The only high number of nucleation sites in the Cu = 1.2% alloy allows for a sufficient level of grains' coarsening of the α-Fe phase that strongly enhances the ferromagnetic exchange between the α-Fe nanocrystals, which is clearly seen with the increasing value of saturation induction up to 1.7T. The air-annealing process tested on studied alloys for optimal annealing conditions proves the possibility of its use for this type of material.

5.
Materials (Basel) ; 14(18)2021 Sep 12.
Article in English | MEDLINE | ID: mdl-34576465

ABSTRACT

The spontaneous oxidation of a magnetite surface and shape design are major aspects of synthesizing various nanostructures with unique magnetic and electrical properties, catalytic activity, and biocompatibility. In this article, the roles of different organic modifiers on the shape and formation of an oxidized layer composed of maghemite were discussed and described in the context of magnetic and electrical properties. It was confirmed that Fe3O4 nanoparticles synthesized in the presence of triphenylphosphine could be characterized by cuboidal shape, a relatively low average particle size (9.6 ± 2.0 nm), and high saturation magnetization equal to 55.2 emu/g. Furthermore, it has been confirmed that low-frequency conductivity and dielectric properties are related to surface disordering and oxidation. The electric energy storage possibility increased for nanoparticles with a disordered and oxidized surface, whereas the dielectric losses in these particles were strongly related to their size. The cuboidal magnetite nanoparticles synthesized in the presence of triphenylphosphine had an ultrahigh electrical conductivity (1.02 × 10-4 S/cm at 10 Hz) in comparison to the spherical ones. At higher temperatures, the maghemite content altered the behavior of electrons. The electrical conductivity can be described by correlated barrier hopping or overlapping large polaron tunneling. Interestingly, the activation energies of electrons transport by the surface were similar for all the analyzed nanoparticles in low- and high-temperature ranges.

6.
Materials (Basel) ; 14(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33805029

ABSTRACT

The effect of iron and yttrium additions on glass forming ability and corrosion resistance of Al88Y8-xFe4+x (x = 0, 1, 2 at.%) alloys in the form of ingots and melt-spun ribbons was investigated. The crystalline multiphase structure of ingots and amorphous-crystalline structure of ribbons were examined by a number of analytical techniques including X-ray diffraction, Mössbauer spectroscopy, and transmission electron microscopy. It was confirmed that the higher Fe additions contributed to formation of amorphous structures. The impact of chemical composition and structure of alloys on their corrosion resistance was characterized by electrochemical tests in 3.5% NaCl solution at 25 °C. The identification of the mechanism of chemical reactions taking place during polarization test along with the morphology and internal structure of the surface oxide films generated was performed. It was revealed that the best corrosion resistance was achieved for the Al88Y7Fe5 alloy in the form of ribbon, which exhibited the lowest corrosion current density (jcorr = 0.09 µA/cm2) and the highest polarization resistance (Rp = 96.7 kΩ∙cm2).

7.
J Chem Phys ; 153(22): 224202, 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33317304

ABSTRACT

The Mössbauer effect was used to study the structural transitions in a PbZr0.72Sn0.28O3 single crystal. Two kinds of quadrupole splittings were registered and connected with two different environments of the Sn ion occupying the center of SnO6 octahedra. What is responsible for the existence of these two environments is the disorder in tilts of oxygen octahedra and antiparallel shifts of pairs of lead ions. Both disorders decide on structural transitions which the PbZr0.72Sn0.28O3 single crystal undergoes. The two kinds of quadruple splittings that have been observed do not disappear at temperatures far above phase transitions. This indicates that the structure of the paraelectric phase is locally non-centrosymmetric and confirms pre-transitional effects previously reported for Sn doped PbZrO3 single crystals.

8.
Materials (Basel) ; 14(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374454

ABSTRACT

The aim of the work was to characterize the structure of Al65Cu20Fe15 alloy obtained with the use of conventional casting and rapid solidification-melt-spinning technology. Based on the literature data, the possibility of an icosahedral quasicrystalline phase forming in the Al-Cu-Fe was verified. Structure analysis was performed based on the results of X-ray diffraction, neutron diffraction, 57Fe Mössbauer and transmission electron microscopy. Studies using differential scanning calorimetry were carried out to describe the crystallization mechanism. Additionally, electrochemical tests were performed in order to characterize the influence of the structure and cooling rate on the corrosion resistance. On the basis of the structural studies, the formation of a metastable icosahedral phase and partial amorphous state of ribbon structure were demonstrated. The possibility of the formation of icosahedral quasicrystalline phase I-AlCuFe together with the crystalline phases was indicated by X-ray diffraction (XRD), neutron diffraction (ND) patterns, Mössbauer spectroscopy, high-resolution transmission electron microscopy (HRTEM) observations and differential scanning calorimetry (DSC) curves. The beneficial effect of the application of rapid solidification on the corrosive properties was also confirmed.

9.
J Radioanal Nucl Chem ; 317(1): 261-268, 2018.
Article in English | MEDLINE | ID: mdl-29950748

ABSTRACT

Gamma irradiation studies of (Mg0.905Fe0.095)2SiO4 olivine were performed using X-ray fluorescence method, X-ray diffraction, Raman and Mössbauer spectroscopy. The absorbed doses were 300, 600 and 1000 Gy. Small irradiation doses cause an increase of lattice vibrations and small deformation of both M1 and M2 octahedron. The observed effect is similar to the results expose to high temperature. However, the small deformation takes place only in unit cell of Olivine's structure.

10.
Dalton Trans ; 47(19): 6702-6712, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29701735

ABSTRACT

Two types of (acetylide)(triethylphosphine)gold(i) complexes ArCOC[triple bond, length as m-dash]CAuPEt3 (1a and 1b) and ArC[triple bond, length as m-dash]CAuPEt3 (2a and 2b) bearing Ar = pyren-1-yl or ferrocenyl group were synthesized and the effect of a carbonyl moiety on the structure, propensity to ligand scrambling in solution and luminescence properties were investigated. We found that the complexes bearing acetylenic ketone-derived ligands underwent ligand scrambling in solution to afford mixtures of ArCOC[triple bond, length as m-dash]CAuPEt3 and [(ArCOC[triple bond, length as m-dash]C)2Au]-[Au(PEt3)2]+. The latter complexes were isolated and their structures were confirmed by single crystal X-ray diffraction studies. The aurophilic interaction of AuAu in these complexes resulted in the formation of wire-like structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...