Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncol Rep ; 32(1): 419-24, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24841903

ABSTRACT

Cyclin-dependent kinase 5 (CDK5) is a potential target for prostate cancer treatment, the enzyme being essential for prostate tumor growth and formation of metastases. In the present study, we identified agents that target prostate cancer cells based on CDK5 expression. CDK5 activity was suppressed by transfection of PC3 prostate cancer cells with a dominant-negative construct (PC3 CDK5dn). PC3 CDK5dn and PC3 control cells were screened for compounds that selectively target cells based on CDK5 expression, utilizing the Johns Hopkins Drug Library. MTS proliferation, clonogenic and 3D growth assays were performed to validate the selected hits. Screening of 3,360 compounds identified rutilantin, ethacridine lactate and cetalkonium chloride as compounds that selectively target PC3 control cells and a tilorone analog as a selective inhibitor of PC3 CDK5dn cells. A PubMed literature study indicated that tilorone may have clinical use in patients. Validation experiments confirmed that tilorone treatment resulted in decreased PC3 cell growth and invasion; PC3 cells with inactive CDK5 were inhibited more effectively. Future studies are needed to unravel the mechanism of action of tilorone in CDK5 deficient prostate cancer cells and to test combination therapies with tilorone and a CDK5 inhibitor for its potential use in clinical practice.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclin-Dependent Kinase 5/metabolism , Neoplasm Invasiveness/pathology , Prostatic Neoplasms/pathology , Tilorone/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Prostatic Neoplasms/metabolism , Small Molecule Libraries/pharmacology
2.
FASEB J ; 27(10): 4279-93, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23884428

ABSTRACT

Combinations of anticancer therapies with high efficacy and low toxicities are highly sought after. Therefore, we studied the effect of polo-like kinase 1 (Plk1) inhibitors on prostate cancer cells as a single agent and in combination with histone deacetylase (HDAC) inhibitors valproic acid and vorinostat. IC50s of Plk1 inhibitors BI 2536 and BI 6727 were determined in prostate cancer cells by MTS assays. Morphological and molecular changes were assessed by immunoblotting, immunofluorescence, flow cytometry, real-time RT-PCR, and pulldown assays. Efficacy of combination therapy was assessed by MTS and clonogenic assays. IC50 values in DU145, LNCaP, and PC3 cells were 50, 75, and 175 nM, respectively, for BI 2536 and 2.5, 5, and 600 nM, respectively, for BI 6727. Human prostate fibroblasts and normal prostate epithelial cells were unaffected at these concentrations. While DU145 and LNCaP cells were solely arrested in mitosis on treatment, PC3 cells accumulated in G2 phase and mitosis, suggesting a weak spindle assembly checkpoint. Combining Plk1 inhibitors with HDAC inhibitors had synergistic antitumor effects in vitro. DMSO-treated prostate cancer cells were used as controls to study the effect of Plk1 and HDAC inhibition. Plk1 inhibitors decreased proliferation and clonogenic potential of prostate cancer cells. Hence, Plk1 may serve as an important molecular target for inhibiting prostate cancer. Combining HDAC inhibitors with BI 2536 or BI 6727 may be an effective treatment strategy against prostate cancer.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Prostatic Neoplasms/enzymology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pteridines/pharmacology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Therapy, Combination , Humans , Hydroxamic Acids/pharmacology , Male , Valproic Acid/pharmacology , Vorinostat , Polo-Like Kinase 1
3.
Cancer Biol Ther ; 14(5): 401-10, 2013 May.
Article in English | MEDLINE | ID: mdl-23377825

ABSTRACT

The N-myc downstream regulated gene 1 (NDRG1) has been identified as a metastasis-suppressor gene in prostate cancer (PCa). Compounds targeting PCa cells deficient in NDRG1 could potentially decrease invasion/metastasis of PCa. A cell based screening strategy was employed to identify small molecules that selectively target NDRG1 deficient PCa cells. DU-145 PCa cells rendered deficient in NDRG1 expression by a lentiviral shRNA-mediated knockdown strategy were used in the primary screen. Compounds filtered from the primary screen were further validated through proliferation and clonogenic survival assays in parental and NDRG1 knockdown PCa cells. Screening of 3360 compounds revealed irinotecan and cetrimonium bromide (CTAB) as compounds that exhibited synthetic lethality against NDRG1 deficient PCa cells. A three-dimensional (3-D) invasion assay was utilized to test the ability of CTAB to inhibit invasion of DU-145 cells. CTAB was found to remarkably decrease invasion of DU-145 cells in collagen matrix. Our results suggest that CTAB and irinotecan could be further explored for their potential clinical benefit in patients with NDRG1 deficient PCa.


Subject(s)
Camptothecin/analogs & derivatives , Cell Cycle Proteins/deficiency , Cetrimonium Compounds/pharmacology , Intracellular Signaling Peptides and Proteins/deficiency , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Camptothecin/pharmacology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Growth Processes/drug effects , Cell Line, Tumor , Cetrimonium , Gene Knockdown Techniques , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Irinotecan , Male , Middle Aged , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Surface-Active Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...