Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(3): 894-897, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38167674

ABSTRACT

The 20-nuclearity compound [Fe8Dy12(tea)8(teaH)12(NO3)12]·8MeCN (where teaH3 = triethanolamine) was synthesised and characterised through single crystal X-ray diffraction and magnetic measurements. The shape of the magnetic hysteresis in the microSQUID measurements was rationalised using the MAGELLAN program.

2.
Chemistry ; 27(61): 15102-15108, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34617631

ABSTRACT

The {Fe2 Dy2 } butterfly systems can show single molecule magnet (SMM) behaviour, the nature of which depends on details of the electronic structure, as previously demonstrated for the [Fe2 Dy2 (µ3 -OH)2 (Me-teaH)2 (O2 CPh)6 ] compound, where the [N,N-bis-(2-hydroxyethyl)-amino]-2-propanol (Me-teaH3 ) ligand is usually used in its racemic form. Here, we describe the consequences for the SMM properties by using enantiopure versions of this ligand and present the first homochiral 3d/4 f SMM, which could only be obtained for the S enantiomer of the ligand for [Fe2 Dy2 (µ3 -OH)2 (Me-teaH)2 (O2 CPh)6 ] since the R enantiomer underwent significant racemisation. To investigate this further, we prepared the [Fe2 Dy2 (µ3 -OH)2 (Me-teaH)2 (O2 CPh)4 (NO3 )2 ] version, which could be obtained as the RS-, R- and S-compounds. Remarkably, the enantiopure versions show enhanced slow relaxation of magnetisation. The use of the enantiomerically pure ligand suppresses QTM, leading to the conclusion that use of enantiopure ligands is a "gamechanger" by breaking the cluster symmetry and altering the intimate details of the coordination cluster's molecular structure.

3.
Chemistry ; 27(61): 15095-15101, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34554613

ABSTRACT

In an assisted self-assembly approach starting from the [Mn6 O2 (piv)10 (4-Me-py)2 (pivH)2 ] cluster a family of Mn-Ln compounds (Ln=Pr-Yb) was synthesised. The reaction of [Mn6 O2 (piv)10 (4-Me-py)2 (pivH)2 ] (1) with N-methyldiethanolamine (mdeaH2 ) and Ln(NO3 )3 ⋅ 6H2 O in MeCN generally yields two main structure types: for Ln=Tb-Yb a previously reported Mn5 Ln4 motif is obtained, whereas for Ln=Pr-Eu a series of Mn7 Ln3 clusters is obtained. Within this series the GdIII analogue represents a special case because it shows both structural types as well as a third Mn2 Ln2 inverse butterfly motif. Variation in reaction conditions allows access to different structure types across the whole series. This prompts further studies into the reaction mechanism of this cluster assisted self-assembly approach. For the Mn7 Ln3 analogues reported here variable-temperature magnetic susceptibility measurements suggest that antiferromagnetic interactions between the spin carriers are dominant. Compounds incorporating Ln=NdIII (2), SmIII (3) and GdIII (5) display SMM behaviour. The slow relaxation of the magnetisation for these compounds was confirmed by ac measurements above 1.8 K.

4.
Chemistry ; 27(61): 15043-15065, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34582064

ABSTRACT

In this Review we discuss the tuning handles which can be used to steer the magnetic properties of FeIII -4 f "butterfly" compounds. The majority of presented compounds were produced in the context of project A3 "Di- to tetranuclear compounds incorporating highly anisotropic paramagnetic metal ions" within the SFB/TRR88 "3MET". These contain {FeIII 2 Ln2 } cores encapsulated in ligand shells which are easy to tune in a "test-bed" system. We identify the following advantages and variables in such systems: (i) the complexes are structurally simple usually with one crystallographically independent FeIII and LnIII , respectively. This simplifies theory and anaylsis; (ii) choosing Fe allows 57 Fe Mössbauer spectroscopy to be used as an additional technique which can give information about oxidation levels and spin states, local moments at the iron nuclei and spin-relaxation and, more importantly, about the anisotropy not only of the studied isotope, but also of elements interacting with this isotope; (iii) isostructural analogues with all the available (i. e. not Pm) 4 f ions can be synthesised, enabling a systematic survey of the influence of the 4 f ion on the electronic structure; (iv) this cluster type is obtained by reacting [FeIII 3 O(O2 CR)6 (L)3 ](X) (X=anion, L=solvent such as H2 O, py) with an ethanolamine-based ligand L' and lanthanide salts. This allows to study analogues of [FeIII 2 Ln2 (µ3 -OH)2 (L')2 (O2 CR)6 ] using the appropriate iron trinuclear starting materials. (v) the organic main ligand can be readily functionalised, facilitating a systematic investigation of the effect of organic substituents on the ligands on the magnetic properties of the complexes. We describe and discuss 34 {MIII 2 Ln2 } (M=Fe or in one case Al) butterfly compounds which have been reported up to 2020. The analysis of these gives perspectives for designing new SMM systems with specific electronic and magnetic signatures.

5.
J Am Chem Soc ; 142(35): 14838-14842, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32786752

ABSTRACT

Cyclic coordination clusters (CCCs) are proving to provide an extra dimension in terms of exotic magnetic behavior as a result of their finite but cyclized chain structures. The Fe18Dy6 CCC is a Single Molecule Magnet with the highest nuclearity among Ln containing clusters. The three isostructural compounds [Fe18Ln6(µ-OH)6(ampd)12(Hampd)12(PhCO2)24](NO3)6·38MeCN for Ln = DyIII (1), LuIII (2), or YIII (3), where H2ampd = 2-amino-2-methyl-1,3-propanediol, are reported. These can be described in terms of the cyclization of six {Fe3Ln(µOH)(ampd)2(Hampd)2(PhCO2)4}+ units with six nitrate counterions to give the neutral cluster. The overall structure consists of two giant Dy3 triangles sandwiching a strongly antiferromagnetically coupled Fe18 ring, leading to a toroidal arrangement of the anisotropy axis of the Dy ions, making this the biggest toroidal arrangement on a molecular level known so far.

SELECTION OF CITATIONS
SEARCH DETAIL
...