Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(11): e21923, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034805

ABSTRACT

Ruminant animals rely on the activities of ß-glucosidases from residential microbes to convert feed fibers into glucose for further metabolic uses. In this report, we determined the structures of Br2, which is a glycoside hydrolase family 1 ß-glucosidase from the bovine rumen metagenome. Br2 folds into a classical (ß/α)8-TIM barrel domain but displays unique structural features at loop ß5→α5 and α-helix 5, resulting in different positive subsites from those of other GH1 enzymes. Br2 exhibited the highest specificity toward laminaritriose, suggesting its involvement in ß-glucan hydrolysis in digested feed. We then substituted the residues at subsites +1 and + 2 of Br2 with those of Halothermothrix orenii ß-glucosidase. The C170E and C221T mutations provided favorable interactions with glucooligosaccharide substrates at subsite +2, while the A219N mutation probably improved the substrate preference for cellobiose and gentiobiose relative to laminaribiose at subsite +1. The N407Y mutation increased the affinity toward cellooligosaccharides. These results give further insights into the molecular determinants responsible for substrate specificity in GH1 ß-glucosidases and may provide a basis for future enzyme engineering applications.

2.
Appl Microbiol Biotechnol ; 107(7-8): 2335-2349, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36877249

ABSTRACT

ß-Xylosidases catalyze the hydrolysis of xylooligosaccharides to xylose in the final step of hemicellulose degradation. AnBX, which is a GH3 ß-xylosidase from Aspergillus niger, has a high catalytic efficiency toward xyloside substrates. In this study, we report the three-dimensional structure and the identification of catalytic and substrate binding residues of AnBX by performing site-directed mutagenesis, kinetic analysis, and NMR spectroscopy-associated analysis of the azide rescue reaction. The structure of the E88A mutant of AnBX, determined at 2.5-Å resolution, contains two molecules in the asymmetric unit, each of which is composed of three domains, namely an N-terminal (ß/α)8 TIM-barrel-like domain, an (α/ß)6 sandwich domain, and a C-terminal fibronectin type III domain. Asp288 and Glu500 of AnBX were experimentally confirmed to act as the catalytic nucleophile and acid/base catalyst, respectively. The crystal structure revealed that Trp86, Glu88 and Cys289, which formed a disulfide bond with Cys321, were located at subsite -1. Although the E88D and C289W mutations reduced catalytic efficiency toward all four substrates tested, the substitution of Trp86 with Ala, Asp and Ser increased the substrate preference for glucoside relative to xyloside substrates, indicating that Trp86 is responsible for the xyloside specificity of AnBX. The structural and biochemical information of AnBX obtained in this study provides invaluable insight into modulating the enzymatic properties for the hydrolysis of lignocellulosic biomass. KEY POINTS: • Asp288 and Glu500 of AnBX are the nucleophile and acid/base catalyst, respectively • Glu88 and the Cys289-Cys321 disulfide bond are crucial for the catalytic activity of AnBX • The W86A and W86S mutations in AnBX increased the preference for glucoside substrates.


Subject(s)
Aspergillus niger , Xylosidases , Aspergillus niger/metabolism , Kinetics , Amino Acids , Catalytic Domain , Xylosidases/metabolism , Catalysis , Glucosides , Disulfides , Substrate Specificity , Glycoside Hydrolases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...