Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38399854

ABSTRACT

Green and sustainable power sources for next-generation electronics are being developed. A cellulose paper-based triboelectric nanogenerator (TENG) was fabricated to harness mechanical energy and convert it into electricity. This work proposes a novel approach to modify cellulose paper with natural dyes, including chlorophyll from spinach, anthocyanin from red cabbage, and curcumin from turmeric, to enhance the power output of a TENG. All the natural dyes are found to effectively improve the energy conversion performance of a cellulose paper-based TENG due to their photogenerated charges. The highest power density of 3.3 W/m2 is achieved from the cellulose paper-based TENG modified with chlorophyll, which is higher than those modified with anthocyanin and curcumin, respectively. The superior performance is attributed not only to the photosensitizer properties but also the molecular structure of the dye that promotes the electron-donating properties of cellulose.

2.
Polymers (Basel) ; 15(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36904535

ABSTRACT

The triboelectric nanogenerator (TENG) is a newly developed energy harvesting technology that can convert mechanical energy into electricity. The TENG has received extensive attention due to its potential applications in diverse fields. In this work, a natural based triboelectric material has been developed from a natural rubber (NR) filled with cellulose fiber (CF) and Ag nanoparticles. Ag nanoparticles are incorporated into cellulose fiber (CF@Ag) and are used as a hybrid filler material for the NR composite to enhance the energy conversion efficiency of TENG. The presence of Ag nanoparticles in the NR-CF@Ag composite is found to improve the electrical power output of the TENG by promoting the electron donating ability of the cellulose filler, resulting in the higher positive tribo-polarity of NR. The NR-CF@Ag TENG shows significant improvement in the output power up to five folds compared to the pristine NR TENG. The findings of this work show a great potential for the development of a biodegradable and sustainable power source by converting mechanical energy into electricity.

3.
Polymers (Basel) ; 15(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38231981

ABSTRACT

Increasing energy demands and growing environmental concerns regarding the consumption of fossil fuels are important motivations for the development of clean and sustainable energy sources. A triboelectric nanogenerator (TENG) is a promising energy technology that harnesses mechanical energy from the ambient environment by converting it into electrical energy. In this work, the enhancement of the energy conversion performance of a natural rubber (NR)-based TENG has been proposed by using modified activated carbon (AC). The effect of surface modification techniques, including acid treatments and plasma treatment for AC material on TENG performance, are investigated. The TENG fabricated from the NR incorporated with the modified AC using N2 plasma showed superior electrical output performance, which was attributed to the modification by N2 plasma introducing changes in the surface chemistry of AC, leading to the improved dielectric property of the NR-AC composite, which contributes to the enhanced triboelectric charge density. The highest power density of 2.65 mW/m2 was obtained from the NR-AC (N2 plasma-treated) TENG. This research provides a key insight into the modification of AC for the development of TENG with high energy conversion performance that could be useful for other future applications such as PM2.5 removal or CO2 capture.

4.
Polymers (Basel) ; 14(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36365489

ABSTRACT

The growing demand for energy and environmental concern are crucial driving forces for the development of green and sustainable energy. The triboelectric nanogenerator (TENG) has emerged as a promising solution for harvesting mechanical energy from the environment. In this research, a natural rubber (NR)-based TENG has been developed with an enhanced power output from the incorporation of cellulose nanofibers (CNF) and activated carbon (AC) nanoparticles. The highest voltage output of 137 V, a current of 12.1 µA, and power density of 2.74 W/m2 were achieved from the fabricated NR-CNF-AC TENG. This is attributed to the synergistic effect of the electron-donating properties of cellulose material and the large specific surface area of AC materials. The enhancement of TENG performance paves the way for the application of natural-based materials to convert mechanical energy into electricity, as a clean and sustainable energy source.

5.
Polymers (Basel) ; 15(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36616444

ABSTRACT

Cellulose-based materials have recently drawn much interest due to their sustainability, biodegradability, biocompatibility, and low cost. In this present work, cellulose fiber paper (CFP) was fabricated from sugarcane leaves and used as a friction material for a triboelectric nanogenerator (TENG). Fe3O4 was incorporated to CFP triboelectric material to increase the dielectric constant of CFP for boosting power generation of TENG. The Fe3O4 filled CFP was synthesized using a facile one-pot co-precipitation technique. The effect of Fe3O4 content in CFP on dielectric property and TENG performance was investigated and optimized. The CFP filled with Fe3O4 nanoparticles exhibited the improved dielectric constant and possessed a superior TENG performance than pristine CF. The highest power density of 1.9 W/m2 was achieved, which was able to charge commercial capacitors serving as a power source for small electronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...