Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PDA J Pharm Sci Technol ; 65(2): 92-9, 2011.
Article in English | MEDLINE | ID: mdl-21502070

ABSTRACT

Microbial challenge testing is a common procedure to determine the retention efficiency, performance, and validity of a sterilizing-grade filter. The ASTM 838-05 standard describes a bacteria challenge test procedure based on Brevundimonas diminuta (ATCC 19146), routinely used to verify a 0.2 µm rated sterilizing-grade filter. Process validation procedures most often also utilize B. diminuta (ATCC 19146), but instead of the standard procedures and fluids, process, and product parameters are employed to determine whether these parameters influence the retentivity of the filter or changes to the challenge organism, which might result in the penetration of the filter. In certain instances, the native bioburden within the drug manufacturing process is used to perform such process validation challenge tests. Filter penetrations can happen and cause concern; therefore, it is essential to identify the organism species with accuracy to avoid unnecessary confusion. This paper and its follow-up will describe such imprecision and the resulting misconceptions. It will clarify past determinations and put perspective on the findings. LAY ABSTRACT: Sterilizing-grade filters are used to remove microorganisms from biopharmaceutical solutions. To determine the retention performance of such filters, bacteria challenge tests are utilized, often with a standard challenge organism (Brevundimonas diminuta), in instances with native bioburden. The accuracy of the microorganism identification is of importance to avoid flawed results and misinterpretation of the filter's performance.


Subject(s)
Sterilization , Ultrafiltration , Bacteria , Filtration , Microbial Sensitivity Tests , Micropore Filters
2.
Appl Microbiol Biotechnol ; 67(4): 539-48, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15614563

ABSTRACT

Rapid grouping of bacterial isolates is critical in comprehensive microbial studies of environmental samples or screening programmes e.g. in unknown marine environments where large numbers of strains have to be isolated on different growth media. Sets of bacteria have been cultured from the marine sponges Isops phlegraei, Haliclona sp. 1, Phakellia ventilabrum and Plakortis sp. growing at a depth of about 300 m on the Sula Ridge close to the Norwegian coast. We employed Intact-Cell MALDI-TOF (ICM) mass spectrometry to achieve a rapid proteometric clustering of a subset of the strain collection including 456 isolates. Cluster analysis of mass spectra resolved the strains into 11 groups corresponding to species of Alteromonas (15), Bacillus (3), Colwellia (31), Erythrobacter (19), Marinobacter (14), Marinococcus (6), Pseudoalteromonas (297), Pseudomonas (56), Roseobacter (3), Sphingomonas (2) and Vibrio (10) as verified by 16 S rDNA analysis. A further discrimination into subgroups was demonstrated for different isolates from the genus Pseudoalteromonas. The approach described here permits the rapid identification of isolates for dereplication, and the selection of strains representing rare species for subsequent characterization.


Subject(s)
Bacteria/classification , Bacteria/genetics , Bacterial Proteins/chemistry , Porifera/microbiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Bacteria/growth & development , Bacteria/isolation & purification , Bacterial Typing Techniques , DNA, Bacterial/analysis , Molecular Sequence Data , Norway , Phylogeny , Proteome , RNA, Ribosomal, 16S/genetics , Seawater , Sequence Analysis, DNA , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...