Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Analyst ; 149(7): 2034-2044, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38407468

ABSTRACT

Integrating electrochemistry into capillary-flow driven immunoassay devices provides unique opportunities for quantitative point-of-care testing. Although custom electrodes can be inexpensive and are tunable, they require skilled fabrication. Here, we report the incorporation of a commercial electrode into a capillary-flow driven immunoassay (iceCaDI) device for a single end-user step sandwich electrochemical enzyme-linked immunosorbent assay (ELISA). The iceCaDI device is a pump-free portable microfluidic device with an integrated commercial screen-printed electrode and flow driven by capillary action. The iceCaDI device is composed of alternating polyester transparency film and double-sided adhesive film layers that are patterned with a laser cutter. This platform was designed to address known limitations of laminated device fabrication methods and operation. First, we developed a foldable laminated device fabrication using hinges for easy assembly and precise alignment. Second, reagent dispersing was achieved by incorporating a 1 mm wide arrow-shaped notch in the middle of the channel that trapped an air bubble and formed a baffle that facilitated reagent spreading to cover the detection area. Third, small vent holes were added to the top layer of the channels to prevent air bubbles from blocking flow. Finally, we fabricated a CRP immunosensor with a detection range of 0.625 to 10.0 µg mL-1 as a proof-of-concept to demonstrate an automatically driven sandwich electrochemical ELISA using the iceCaDI device. Three concentrations of CRP were successfully measured under flow conditions within 8 min. Our proposed device is a promising approach and a step forward in the development of point-of-care (POC) devices for techniques that traditionally require multiple user steps.


Subject(s)
Biosensing Techniques , Immunoassay/methods , Enzyme-Linked Immunosorbent Assay , Microfluidics , Electrodes , Electrochemical Techniques/methods , Lab-On-A-Chip Devices
2.
Anal Chim Acta ; 1186: 339130, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34756252

ABSTRACT

Prostate cancer associated 3 (PCA3) assay has been used to improve prostate cancer diagnosis and reduce unnecessary biopsies. In this work, we successfully developed a new PCA3 assay on an origami paper-based peptide nucleic acid device (oPAD). The PCA3 oPAD comprises an acrylic cassette and shutter slides to facilitate the molecular reaction and liquid control occurring on the paper surface. To quantify PCA3, a pyrrolidinyl peptide nucleic acid (acpcPNA) was immobilized onto the aldehyde-modified oPAD surface as a selective capture probe. A G-quadruplex (GQD) DNAzyme reporter probe was designed so that the PCA3 gene target binding triggered the hybridization chain reaction of the reporter probe, resulting in the accumulation of the GQD on the oPAD. The peroxidase activity of the GQD-hemin generated a deep green color of the oxidized ABTS substrate. Image analyses were performed in Adobe Photoshop CS6. The proposed oPAD was successfully applied in PCA3 detection ranges of 1-5 µM (r2 = 0.982) with a limit of detection of 0.5 µM. Our proposed oPAD was demonstrated to measure PCA3 samples in both urine matrix and human cancer cell lines. The results reveal the great potential of our origami paper-based platform to be an alternative approach for facile, rapid, and low-cost detection of PCA3 in real samples.


Subject(s)
DNA, Catalytic , Peptide Nucleic Acids , Prostatic Neoplasms , Antigens, Neoplasm , Early Detection of Cancer , Humans , Male , Nucleic Acid Hybridization , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics
3.
Talanta ; 164: 534-539, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28107969

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a genetic haemolytic disorder. Most persons with G6PD deficiency are asymptomatic, but exposure to oxidant drugs, such as the anti-malarial drug primaquine, may induce haemolysis, which is commonly found in Asian countries. A reliable test is necessary for diagnosing the deficiency to prevent an acute haemolytic crisis. This study proposes a novel quantitative method to detect G6PD deficiency using paper-based analytical devices (G6PDD-PAD). Wax printing was utilized for fabricating circular reaction zone patterns in paper. The colorimetric assay is based on the formation of formazan via a reduction of tetra-nitro blue tetrazolium (TNBT) by the G6PD enzyme on G6PDD-PAD. Detection was achieved by capturing the colour using a desktop scanner and the colour intensity was analysed with Adobe Photoshop C56. The results showed that the G6PD activity analysed by G6PDD-PAD was highly correlated with the standard biochemical assay (SBA) (r2=0.87, p<0.01). Moreover, good agreement by Bland-Altman bias plot was demonstrated between G6PDD-PAD and the SBA (mean bias 1.4 IU/gHb). The detection limit was 0 IU/gHb of G6PD activity. This study demonstrates the feasibility of using G6PDD-PAD. This simple, low-cost test ($0.1/test) should be useful for diagnosing G6PD deficiency in resource-limited settings.


Subject(s)
Colorimetry/instrumentation , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Paper , Humans , Printing
SELECTION OF CITATIONS
SEARCH DETAIL
...