Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 10(4)2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33921675

ABSTRACT

Excess soluble iron in acidic soil is an unfavorable environment that can reduce rice production. To better understand the tolerance mechanism and identify genetic loci associated with iron toxicity (FT) tolerance in a highly diverse indica Thai rice population, a genome-wide association study (GWAS) was performed using genotyping by sequencing and six phenotypic data (leaf bronzing score (LBS), chlorophyll content, shoot height, root length, shoot biomass, and root dry weight) under both normal and FT conditions. LBS showed a high negative correlation with the ratio of chlorophyll content and shoot biomass, indicating the FT-tolerant accessions can regulate cellular homeostasis when encountering stress. Sixteen significant single nucleotide polymorphisms (SNPs) were identified by association mapping. Validation of candidate SNP using other FT-tolerant accessions revealed that SNP:2_21262165 might be associated with tolerance to FT; therefore, it could be used for SNP marker development. Among the candidate genes controlling FT tolerance, RAR1 encodes an innate immune responsive protein that links to cellular redox homeostasis via interacting with abiotic stress-responsive Hsp90. Future research may apply the knowledge obtained from this study in the molecular breeding program to develop FT-tolerant rice varieties.

2.
Breed Sci ; 68(5): 614-621, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30697123

ABSTRACT

Wild rice, Oryza rufipogon, is a genetic resource that can be used to improve cultivated rice, but its populations are now decreasing in terms of both size and number. Extensive research on wild rice has been conducted in Thailand, where two in situ conservation sites have been preserved in natural areas where perennial wild rice predominates. The genetic structure of wild rice populations was investigated by examining both the chloroplast and nucleus genomes at sites of in situ conservation site in Thailand. One accession from an in situ-conserved site was re-sequenced against the chloroplast genome of O. sativa cv. 'Nipponbare' to develop chloroplast insertion/deletion (cpINDEL) markers. These cpINDEL markers revealed unique maternal lineages in the in situ-conserved populations upon comparison with other Asian wild rice accessions. Diverse genetic variation was also detected with SSR markers throughout the genome. Three populations differed from each other and also within single populations. The sub-populations within an in situ-conserved population showed a complex population structure due to their multiple maternal lineages and relatively higher number of haplotypes when they maintained a relatively large population size. Such a heterogeneous population would serve as a unique gene pool for rice breeding.

3.
Genes Genet Syst ; 90(5): 269-81, 2015.
Article in English | MEDLINE | ID: mdl-26687860

ABSTRACT

AA genome species in the genus Oryza are valuable resources for improvement of cultivated rice. Oryza rufipogon and O. barthii were progenitors of two domesticated rice species, O. sativa and O. glaberrima, respectively. We used chloroplast single-nucleotide repeats (RCt1-10) to evaluate genetic diversity among AA genome species. Higher diversity was detected in the American species O. glumaepatula and the Asian species O. rufipogon. Other chloroplast sequences indicated that O. glumaepatula shares high similarity with O. longistaminata. Insertions of retrotransposable elements, however, showed a close relation between O. barthii and O. glumaepatula. To clarify phylogenetic relationships among AA genomes, whole-genome sequences obtained from different species were used to develop chloroplast INDEL markers. The INDEL patterns clearly showed multiple maternal origins of O. glumaepatula. The complicated origins have resulted in high genetic diversity in this species. In contrast, the Australian endemic species O. meridionalis tended to show narrower diversity than the other species. High variation in O. rufipogon, reconfirmed using the chloroplast INDELs, covered the variation in O. meridionalis and part of the variation in O. glumaepatula. Maternal lineages including O. barthii, O. longistaminata and the remainder of O. glumaepatula were phylogenetically close to each other and carried low genetic diversity. They were separated from independent lineages, suggesting that they had diverged from a single ancestral maternal lineage, but diverged later to keep gene flow within respective species, as SSR compositions suggested. Genetic relationships among AA genome species indicate how these species have evolved and become distributed across four continents.


Subject(s)
Cell Nucleus/genetics , Genome, Plant , Oryza/genetics , Plastids/genetics , Chloroplasts/genetics , Microsatellite Repeats , Oryza/classification , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...