Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(47): 44586-44600, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38046294

ABSTRACT

This research aimed to evaluate the performance and emissions of direct injection diesel engines using blends of diesel-biodiesel-esterified pyrolysis bio-oil (D-B-EPB). The pyrolysis process was employed to produce pyrolysis bio-oil (PBO) from solid biomass obtained from fresh palm fruits. Furthermore, a simple and effective esterification process was used to upgrade the PBO. The methyl ester (ME) purity of EPB production was studied to optimize three independent variables: methanol (14.8-65.2 wt %), sulfuric acid (1.6-18.4 wt %), and reaction time (16-84 min) using the response surface methodology. The actual experiment yielded a ME purity of 72.73 wt % under the recommended conditions of 40.3 wt % methanol, 13.0 wt % sulfuric acid, 50 min reaction time, 60 °C reaction temperature, and 300 rpm stirrer speed. Additionally, the stability and phase behaviors of D-B-EPB blends were analyzed by using a ternary phase diagram to determine the potential blending proportion. The results revealed that a fuel blend consisting of 30 wt % diesel, 60 wt % biodiesel, and 10 wt % EPB (D30B60EPB10) met the density and viscosity requirements of diesel standards. This D30B60EPB10 blend was subjected to performance and emission tests in diesel engines at various speeds ranging from 1100 to 2300 rpm and different engine loads of 25, 50, and 75%. In terms of performance analysis, the brake thermal efficiencies of biodiesel and D30B60EPB10 were 7.19 and 3.88% higher than that of diesel, respectively. However, the brake-specific fuel consumption of the D30B60EPB10 blend was 6.60% higher than that of diesel due to its higher density and viscosity and lower heating value compared with that of diesel. In the emission analysis, the D30B60EPB10 blend exhibited performance comparable to diesel while being more environmentally friendly, reducing carbon monoxide, carbon dioxide, nitrogen oxide, and smoke opacity by 8.73, 30.13, 37.55, and 59.75%, respectively. The results of this study suggest that the D-B-EPB blend has the potential to serve as a viable biofuel option, reducing the proportion of diesel in blended fuel and benefiting farmers and rural communities..

2.
Environ Sci Pollut Res Int ; 30(55): 117829-117845, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37875756

ABSTRACT

Global energy demand has drastically increased due to urbanization and industrialization; thus, developing alternative renewable energy sources is urgently required. In the present work, upgrading the pyrolytic oil (PO) derived from fresh palm fruit was performed by the catalytic in situ hydrodeoxygenation (in situ HDO) process. Preparation of nickel-doped HZSM-5 zeolite (SiO2/Al2O3 = 40) was achieved by incipient wetness impregnation techniques using different weight percents of nickel dopant into HZSM-5. Nickel-doped HZSM-5 zeolite (Ni-HZSM-5) was further subjected to chemical reduction for 5 h in the oxygen-free environment (10% H2 and 90% N2) at 550 °C. The structural properties showed a potential reduction of NiO-HZSM-5 to Ni-HZSM-5, enhancing the catalytic potential. The morphological characterizations showed spherical-shaped Ni agglomerated onto HZSM-5. Acidity and oxygen contents in the pyrolytic oil were achieved by catalyst-aided HDO process at 220 °C for 6 h using methanol as a hydrogen donor. The catalytically upgraded pyrolytic oil (UPO) was analyzed for density, HHV, CHNO, and TGA. The best upgrading oil was distilled following ASTM D86 to separate gasoline, kerosene, and diesel. The acidity, density, HHV, and viscosity were measured before and after the upgradation processes. The results showed the potential impact of Ni with 10% doped on HZSM-5 on HDO reaction and illustrated the lowest oxygen content in upgraded pyrolytic oil products. Considerable decrease in viscosity and density level indicated that in situ HDO not only reduced oxygen content but also cracked pyrolytic oil to small molecules. The distilled product of upgrading oil was higher than pyrolytic oil by approximately 15% in volume. The viscosity, density, and HHV were under standard specifications of kerosene and diesel, except for acidity. However, the acidity was reduced by over 60% compared with raw material.


Subject(s)
Nickel , Zeolites , Nickel/chemistry , Kerosene , Silicon Dioxide , Oxygen , Catalysis , Biofuels
SELECTION OF CITATIONS
SEARCH DETAIL
...