Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Ther Apher Dial ; 28(2): 182-191, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37873724

ABSTRACT

BACKGROUND: Sarcopenia has a high prevalence in end-stage kidney disease (ESKD). However, there is limited evidence of resistance exercise in these patients. OBJECTIVE: The study investigated the effects of resistance exercise on muscle mass, strength, and physical functioning. METHOD: Fifty-three patients were randomly assigned to resistance training exercise (n = 26) and standard exercise (n = 27) groups. All of the patients were diagnosed with sarcopenia by the Asian Working Group for Sarcopenia 2019 criteria. RESULTS: After 12 weeks, an improvement in leg muscle strength was significantly greater in the resistant exercise group compared with standard exercise (12.19 vs. 2.83 kg, p < 0.001). Appendicular skeletal muscle mass had a mean difference (1.01 vs. 1.02 kg/m2 , p = 0.96). Physical performance status had a mean difference (-2.3 vs. -18 s, p = 0.42). There were no serious adverse events. CONCLUSION: Over a 12-week follow-up, resistance exercise improved muscle strength in sarcopenic ESKD patients. Muscle mass and physical performance showed no significant change, but there is still a trend demonstrating to improve.


Subject(s)
Resistance Training , Sarcopenia , Humans , Sarcopenia/therapy , Body Composition/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology , Renal Dialysis
2.
Ren Fail ; 45(2): 2292163, 2023.
Article in English | MEDLINE | ID: mdl-38087474

ABSTRACT

BACKGROUND: Educational attainment significantly influences post-transplant outcomes in kidney transplant patients. However, research on specific attributes of lower-educated subgroups remains underexplored. This study utilized unsupervised machine learning to segment kidney transplant recipients based on education, further analyzing the relationship between these segments and post-transplant results. METHODS: Using the OPTN/UNOS 2017-2019 data, consensus clustering was applied to 20,474 kidney transplant recipients, all below a college/university educational threshold. The analysis concentrated on recipient, donor, and transplant features, aiming to discern pivotal attributes for each cluster and compare post-transplant results. RESULTS: Four distinct clusters emerged. Cluster 1 comprised younger, non-diabetic, first-time recipients from non-hypertensive younger donors. Cluster 2 predominantly included white patients receiving their first-time kidney transplant either preemptively or within three years, mainly from living donors. Cluster 3 included younger re-transplant recipients, marked by elevated PRA, fewer HLA mismatches. In contrast, Cluster 4 captured older, diabetic patients transplanted after prolonged dialysis duration, primarily from lower-grade donors. Interestingly, Cluster 2 showcased the most favorable post-transplant outcomes. Conversely, Clusters 1, 3, and 4 revealed heightened risks for graft failure and mortality in comparison. CONCLUSIONS: Through unsupervised machine learning, this study proficiently categorized kidney recipients with lesser education into four distinct clusters. Notably, the standout performance of Cluster 2 provides invaluable insights, underscoring the necessity for adept risk assessment and tailored transplant strategies, potentially elevating care standards for this patient cohort.


Subject(s)
Kidney Transplantation , Tissue and Organ Procurement , Humans , Transplant Recipients , Graft Survival , Living Donors , Educational Status , Machine Learning , Graft Rejection/prevention & control
3.
J Pers Med ; 13(8)2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37623523

ABSTRACT

Longer pre-transplant dialysis duration is known to be associated with worse post-transplant outcomes. Our study aimed to cluster kidney transplant recipients with prolonged dialysis duration before transplant using an unsupervised machine learning approach to better assess heterogeneity within this cohort. We performed consensus cluster analysis based on recipient-, donor-, and transplant-related characteristics in 5092 kidney transplant recipients who had been on dialysis ≥ 10 years prior to transplant in the OPTN/UNOS database from 2010 to 2019. We characterized each assigned cluster and compared the posttransplant outcomes. Overall, the majority of patients with ≥10 years of dialysis duration were black (52%) or Hispanic (25%), with only a small number (17.6%) being moderately sensitized. Within this cohort, three clinically distinct clusters were identified. Cluster 1 patients were younger, non-diabetic and non-sensitized, had a lower body mass index (BMI) and received a kidney transplant from younger donors. Cluster 2 recipients were older, unsensitized and had a higher BMI; they received kidney transplant from older donors. Cluster 3 recipients were more likely to be female with a higher PRA. Compared to cluster 1, cluster 2 had lower 5-year death-censored graft (HR 1.40; 95% CI 1.16-1.71) and patient survival (HR 2.98; 95% CI 2.43-3.68). Clusters 1 and 3 had comparable death-censored graft and patient survival. Unsupervised machine learning was used to characterize kidney transplant recipients with prolonged pre-transplant dialysis into three clinically distinct clusters with variable but good post-transplant outcomes. Despite a dialysis duration ≥ 10 years, excellent outcomes were observed in most recipients, including those with moderate sensitization. A disproportionate number of minority recipients were observed within this cohort, suggesting multifactorial delays in accessing kidney transplantation.

4.
J Cardiovasc Electrophysiol ; 34(10): 2086-2094, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37554118

ABSTRACT

INTRODUCTION: The concurrent data on sex disparities in VT management and outcomes have remained unclear. Therefore, our objective was to determine the impact of sex on ventricular tachycardia (VT) management and outcomes in patients admitted with VT, dervied from the US National Inpatient Sample database (NIS). METHODS: We used data from the US NIS to identify hospitalized adult patients who were admitted with VT between 2016 and 2018. Regression analysis was conducted to evaluate the impact of sex on VT management, in-hospital mortality, complications, length of stay, and hospitalization costs. RESULTS: Of the database, a total of 146 070 patients, who were primarily hospitalized for VT, were approximated. Among these, women comprised 25.5%; they were significantly younger and had fewer comorbidities. Of procedural aspects, women were less likely to receive an angiogram, mechanical support, implantable cardioverter-defibrillator implantation, and VT ablation compared to men. Notably, women were associated with higher do-not-resuscitate rates and in-hospital cardiac arrests than men. No differences in in-hospital mortality and cardiogenic shock were observed between men and women (p > .05). Length of stay was significantly longer for women, while no differences in hospital costs were observed in both sexes. CONCLUSION: Significant sex disparities in management and outcomes were observed in admitted patients with VT. Our results reflect the need for further studies to explore factors causing such diversities.

5.
J Pers Med ; 13(7)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37511707

ABSTRACT

Clinical outcomes of deceased donor kidney transplants coming from diabetic donors currently remain inconsistent, possibly due to high heterogeneities in this population. Our study aimed to cluster recipients of diabetic deceased donor kidney transplants using an unsupervised machine learning approach in order to identify subgroups with high risk of inferior outcomes and potential variables associated with these outcomes. Consensus cluster analysis was performed based on recipient-, donor-, and transplant-related characteristics in 7876 recipients of diabetic deceased donor kidney transplants from 2010 to 2019 in the OPTN/UNOS database. We determined the important characteristics of each assigned cluster and compared the post-transplant outcomes between the clusters. Consensus cluster analysis identified three clinically distinct clusters. Recipients in cluster 1 (n = 2903) were characterized by oldest age (64 ± 8 years), highest rate of comorbid diabetes mellitus (55%). They were more likely to receive kidney allografts from donors that were older (58 ± 6.3 years), had hypertension (89%), met expanded criteria donor (ECD) status (78%), had a high rate of cerebrovascular death (63%), and carried a high kidney donor profile index (KDPI). Recipients in cluster 2 (n = 687) were younger (49 ± 13 years) and all were re-transplant patients with higher panel reactive antibodies (PRA) (88 [IQR 46, 98]) who received kidneys from younger (44 ± 11 years), non-ECD deceased donors (88%) with low numbers of HLA mismatch (4 [IQR 2, 5]). The cluster 3 cohort was characterized by first-time kidney transplant recipients (100%) who received kidney allografts from younger (42 ± 11 years), non-ECD deceased donors (98%). Compared to cluster 3, cluster 1 had higher incidence of primary non-function, delayed graft function, patient death and death-censored graft failure, whereas cluster 2 had higher incidence of delayed graft function and death-censored graft failure but comparable primary non-function and patient death. An unsupervised machine learning approach characterized diabetic donor kidney transplant patients into three clinically distinct clusters with differing outcomes. Our data highlight opportunities to improve utilization of high KDPI kidneys coming from diabetic donors in recipients with survival-limiting comorbidities such as those observed in cluster 1.

6.
Medicina (Kaunas) ; 59(5)2023 May 18.
Article in English | MEDLINE | ID: mdl-37241209

ABSTRACT

Background and Objectives: The aim of our study was to categorize very highly sensitized kidney transplant recipients with pre-transplant panel reactive antibody (PRA) ≥ 98% using an unsupervised machine learning approach as clinical outcomes for this population are inferior, despite receiving increased allocation priority. Identifying subgroups with higher risks for inferior outcomes is essential to guide individualized management strategies for these vulnerable recipients. Materials and Methods: To achieve this, we analyzed the Organ Procurement and Transplantation Network (OPTN)/United Network for Organ Sharing (UNOS) database from 2010 to 2019 and performed consensus cluster analysis based on the recipient-, donor-, and transplant-related characteristics in 7458 kidney transplant patients with pre-transplant PRA ≥ 98%. The key characteristics of each cluster were identified by calculating the standardized mean difference. The post-transplant outcomes were compared between the assigned clusters. Results: We identified two distinct clusters and compared the post-transplant outcomes among the assigned clusters of very highly sensitized kidney transplant patients. Cluster 1 patients were younger (median age 45 years), male predominant, and more likely to have previously undergone a kidney transplant, but had less diabetic kidney disease. Cluster 2 recipients were older (median 54 years), female predominant, and more likely to be undergoing a first-time transplant. While patient survival was comparable between the two clusters, cluster 1 had lower death-censored graft survival and higher acute rejection compared to cluster 2. Conclusions: The unsupervised machine learning approach categorized very highly sensitized kidney transplant patients into two clinically distinct clusters with differing post-transplant outcomes. A better understanding of these clinically distinct subgroups may assist the transplant community in developing individualized care strategies and improving the outcomes for very highly sensitized kidney transplant patients.


Subject(s)
Kidney Transplantation , Tissue and Organ Procurement , Humans , Male , Female , Middle Aged , Consensus , Graft Rejection , Cluster Analysis , Machine Learning , Retrospective Studies
7.
Medicines (Basel) ; 10(4)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37103780

ABSTRACT

BACKGROUND: Better understanding of the different phenotypes/subgroups of non-U.S. citizen kidney transplant recipients may help the transplant community to identify strategies that improve outcomes among non-U.S. citizen kidney transplant recipients. This study aimed to cluster non-U.S. citizen kidney transplant recipients using an unsupervised machine learning approach; Methods: We conducted a consensus cluster analysis based on recipient-, donor-, and transplant- related characteristics in non-U.S. citizen kidney transplant recipients in the United States from 2010 to 2019 in the OPTN/UNOS database using recipient, donor, and transplant-related characteristics. Each cluster's key characteristics were identified using the standardized mean difference. Post-transplant outcomes were compared among the clusters; Results: Consensus cluster analysis was performed in 11,300 non-U.S. citizen kidney transplant recipients and identified two distinct clusters best representing clinical characteristics. Cluster 1 patients were notable for young age, preemptive kidney transplant or dialysis duration of less than 1 year, working income, private insurance, non-hypertensive donors, and Hispanic living donors with a low number of HLA mismatch. In contrast, cluster 2 patients were characterized by non-ECD deceased donors with KDPI <85%. Consequently, cluster 1 patients had reduced cold ischemia time, lower proportion of machine-perfused kidneys, and lower incidence of delayed graft function after kidney transplant. Cluster 2 had higher 5-year death-censored graft failure (5.2% vs. 9.8%; p < 0.001), patient death (3.4% vs. 11.4%; p < 0.001), but similar one-year acute rejection (4.7% vs. 4.9%; p = 0.63), compared to cluster 1; Conclusions: Machine learning clustering approach successfully identified two clusters among non-U.S. citizen kidney transplant recipients with distinct phenotypes that were associated with different outcomes, including allograft loss and patient survival. These findings underscore the need for individualized care for non-U.S. citizen kidney transplant recipients.

8.
BMJ Surg Interv Health Technol ; 5(1): e000137, 2023.
Article in English | MEDLINE | ID: mdl-36843871

ABSTRACT

Objectives: This study aimed to identify distinct clusters of very elderly kidney transplant recipients aged ≥80 and assess clinical outcomes among these unique clusters. Design: Cohort study with machine learning (ML) consensus clustering approach. Setting and participants: All very elderly (age ≥80 at time of transplant) kidney transplant recipients in the Organ Procurement and Transplantation Network/United Network for Organ Sharing database database from 2010 to 2019. Main outcome measures: Distinct clusters of very elderly kidney transplant recipients and their post-transplant outcomes including death-censored graft failure, overall mortality and acute allograft rejection among the assigned clusters. Results: Consensus cluster analysis was performed in 419 very elderly kidney transplant and identified three distinct clusters that best represented the clinical characteristics of very elderly kidney transplant recipients. Recipients in cluster 1 received standard Kidney Donor Profile Index (KDPI) non-extended criteria donor (ECD) kidneys from deceased donors. Recipients in cluster 2 received kidneys from older, hypertensive ECD deceased donors with a KDPI score ≥85%. Kidneys for cluster 2 patients had longer cold ischaemia time and the highest use of machine perfusion. Recipients in clusters 1 and 2 were more likely to be on dialysis at the time of transplant (88.3%, 89.4%). Recipients in cluster 3 were more likely to be preemptive (39%) or had a dialysis duration less than 1 year (24%). These recipients received living donor kidney transplants. Cluster 3 had the most favourable post-transplant outcomes. Compared with cluster 3, cluster 1 had comparable survival but higher death-censored graft failure, while cluster 2 had lower patient survival, higher death-censored graft failure and more acute rejection. Conclusions: Our study used an unsupervised ML approach to cluster very elderly kidney transplant recipients into three clinically unique clusters with distinct post-transplant outcomes. These findings from an ML clustering approach provide additional understanding towards individualised medicine and opportunities to improve care for very elderly kidney transplant recipients.

9.
Diseases ; 11(1)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36810532

ABSTRACT

BACKGROUND: The utilization of multi-dimensional patient data to subtype hepatorenal syndrome (HRS) can individualize patient care. Machine learning (ML) consensus clustering may identify HRS subgroups with unique clinical profiles. In this study, we aim to identify clinically meaningful clusters of hospitalized patients for HRS using an unsupervised ML clustering approach. METHODS: Consensus clustering analysis was performed based on patient characteristics in 5564 patients primarily admitted for HRS in the National Inpatient Sample from 2003-2014 to identify clinically distinct HRS subgroups. We applied standardized mean difference to evaluate key subgroup features, and compared in-hospital mortality between assigned clusters. RESULTS: The algorithm revealed four best distinct HRS subgroups based on patient characteristics. Cluster 1 patients (n = 1617) were older, and more likely to have non-alcoholic fatty liver disease, cardiovascular comorbidities, hypertension, and diabetes. Cluster 2 patients (n = 1577) were younger and more likely to have hepatitis C, and less likely to have acute liver failure. Cluster 3 patients (n = 642) were younger, and more likely to have non-elective admission, acetaminophen overdose, acute liver failure, to develop in-hospital medical complications and organ system failure, and to require supporting therapies, including renal replacement therapy, and mechanical ventilation. Cluster 4 patients (n = 1728) were younger, and more likely to have alcoholic cirrhosis and to smoke. Thirty-three percent of patients died in hospital. In-hospital mortality was higher in cluster 1 (OR 1.53; 95% CI 1.31-1.79) and cluster 3 (OR 7.03; 95% CI 5.73-8.62), compared to cluster 2, while cluster 4 had comparable in-hospital mortality (OR 1.13; 95% CI 0.97-1.32). CONCLUSIONS: Consensus clustering analysis provides the pattern of clinical characteristics and clinically distinct HRS phenotypes with different outcomes.

10.
Clin Transplant ; 37(5): e14943, 2023 05.
Article in English | MEDLINE | ID: mdl-36799718

ABSTRACT

BACKGROUND: Our study aimed to characterize kidney retransplant recipients using an unsupervised machine-learning approach. METHODS: We performed consensus cluster analysis based on the recipient-, donor-, and transplant-related characteristics in 17 443 kidney retransplant recipients in the OPTN/UNOS database from 2010 to 2019. We identified each cluster's key characteristics using the standardized mean difference of >.3. We compared the posttransplant outcomes, including death-censored graft failure and patient death among the assigned clusters RESULTS: Consensus cluster analysis identified three distinct clusters of kidney retransplant recipients. Cluster 1 recipients were predominantly white and were less sensitized. They were most likely to receive a living donor kidney transplant and more likely to be preemptive (30%) or need ≤1 year of dialysis (32%). In contrast, cluster 2 recipients were the most sensitized (median PRA 95%). They were more likely to have been on dialysis >1 year, and receive a nationally allocated, low HLA mismatch, standard KDPI deceased donor kidney. Recipients in cluster 3 were more likely to be minorities (37% Black; 15% Hispanic). They were moderately sensitized with a median PRA of 87% and were also most likely to have been on dialysis >1 year. They received locally allocated high HLA mismatch kidneys from standard KDPI deceased donors. Thymoglobulin was the most commonly used induction agent for all three clusters. Cluster 1 had the most favorable patient and graft survival, while cluster 3 had the worst patient and graft survival. CONCLUSION: The use of an unsupervised machine learning approach characterized kidney retransplant recipients into three clinically distinct clusters with differing posttransplant outcomes. Recipients with moderate allosensitization, such as those represented in cluster 3, are perhaps more disadvantaged in the kidney retransplantation process. Potential opportunities for improvement specific to these re-transplant recipients include working to improve opportunities to improve access to living donor kidney transplantation, living donor paired exchange and identifying strategies for better HLA matching.


Subject(s)
Tissue and Organ Procurement , Humans , Consensus , Tissue Donors , Living Donors , Graft Survival , Cluster Analysis , Machine Learning , Kidney
11.
Transpl Int ; 35: 10810, 2022.
Article in English | MEDLINE | ID: mdl-36568137

ABSTRACT

Data and transplant community opinion on delayed graft function (DGF), and its impact on outcomes, remains varied. An unsupervised machine learning consensus clustering approach was applied to categorize the clinical phenotypes of kidney transplant (KT) recipients with DGF using OPTN/UNOS data. DGF was observed in 20.9% (n = 17,073) of KT and most kidneys had a KDPI score <85%. Four distinct clusters were identified. Cluster 1 recipients were young, high PRA re-transplants. Cluster 2 recipients were older diabetics and more likely to receive higher KDPI kidneys. Cluster 3 recipients were young, black, and non-diabetic; they received lower KDPI kidneys. Cluster 4 recipients were middle-aged, had diabetes or hypertension and received well-matched standard KDPI kidneys. By cluster, one-year patient survival was 95.7%, 92.5%, 97.2% and 94.3% (p < 0.001); one-year graft survival was 89.7%, 87.1%, 91.6%, and 88.7% (p < 0.001). There were no differences between clusters after accounting for death-censored graft loss (p = 0.08). Clinically meaningful differences in recipient characteristics were noted between clusters, however, after accounting for death and return to dialysis, there were no differences in death-censored graft loss. Greater emphasis on recipient comorbidities as contributors to DGF and outcomes may help improve utilization of DGF at-risk kidneys.


Subject(s)
Kidney Transplantation , Humans , Tissue Donors , Consensus , Graft Survival , Transplant Recipients , Machine Learning , Risk Factors , Delayed Graft Function , Retrospective Studies
12.
J Pers Med ; 12(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36556213

ABSTRACT

Background: Our study aimed to characterize kidney transplant recipients who received high kidney donor profile index (KDPI) kidneys using unsupervised machine learning approach. Methods: We used the OPTN/UNOS database from 2010 to 2019 to perform consensus cluster analysis based on recipient-, donor-, and transplant-related characteristics in 8935 kidney transplant recipients from deceased donors with KDPI ≥ 85%. We identified each cluster's key characteristics using the standardized mean difference of >0.3. We compared the posttransplant outcomes among the assigned clusters. Results: Consensus cluster analysis identified 6 clinically distinct clusters of kidney transplant recipients from donors with high KDPI. Cluster 1 was characterized by young, black, hypertensive, non-diabetic patients who were on dialysis for more than 3 years before receiving kidney transplant from black donors; cluster 2 by elderly, white, non-diabetic patients who had preemptive kidney transplant or were on dialysis less than 3 years before receiving kidney transplant from older white donors; cluster 3 by young, non-diabetic, retransplant patients; cluster 4 by young, non-obese, non-diabetic patients who received dual kidney transplant from pediatric, black, non-hypertensive non-ECD deceased donors; cluster 5 by low number of HLA mismatch; cluster 6 by diabetes mellitus. Cluster 4 had the best patient survival, whereas cluster 3 had the worst patient survival. Cluster 2 had the best death-censored graft survival, whereas cluster 4 and cluster 3 had the worst death-censored graft survival at 1 and 5 years, respectively. Cluster 2 and cluster 4 had the best overall graft survival at 1 and 5 years, respectively, whereas cluster 3 had the worst overall graft survival. Conclusions: Unsupervised machine learning approach kidney transplant recipients from donors with high KDPI based on their pattern of clinical characteristics into 6 clinically distinct clusters.

13.
Medicina (Kaunas) ; 58(12)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36557033

ABSTRACT

Background and Objectives: Our study aimed to cluster dual kidney transplant recipients using an unsupervised machine learning approach to characterize donors and recipients better and to compare the survival outcomes across these various clusters. Materials and Methods: We performed consensus cluster analysis based on recipient-, donor-, and transplant-related characteristics in 2821 dual kidney transplant recipients from 2010 to 2019 in the OPTN/UNOS database. We determined the important characteristics of each assigned cluster and compared the post-transplant outcomes between clusters. Results: Two clinically distinct clusters were identified by consensus cluster analysis. Cluster 1 patients was characterized by younger patients (mean recipient age 49 ± 13 years) who received dual kidney transplant from pediatric (mean donor age 3 ± 8 years) non-expanded criteria deceased donor (100% non-ECD). In contrast, Cluster 2 patients were characterized by older patients (mean recipient age 63 ± 9 years) who received dual kidney transplant from adult (mean donor age 59 ± 11 years) donor with high kidney donor profile index (KDPI) score (59% had KDPI ≥ 85). Cluster 1 had higher patient survival (98.0% vs. 94.6% at 1 year, and 92.1% vs. 76.3% at 5 years), and lower acute rejection (4.2% vs. 6.1% within 1 year), when compared to cluster 2. Death-censored graft survival was comparable between two groups (93.5% vs. 94.9% at 1 year, and 89.2% vs. 84.8% at 5 years). Conclusions: In summary, DKT in the United States remains uncommon. Two clusters, based on specific recipient and donor characteristics, were identified through an unsupervised machine learning approach. Despite varying differences in donor and recipient age between the two clusters, death-censored graft survival was excellent and comparable. Broader utilization of DKT from high KDPI kidneys and pediatric en bloc kidneys should be encouraged to better address the ongoing organ shortage.


Subject(s)
Kidney Transplantation , United States/epidemiology , Consensus , Retrospective Studies , Kidney , Machine Learning
14.
J Clin Med ; 11(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36362493

ABSTRACT

BACKGROUND: We aimed to develop and validate an automated machine learning (autoML) prediction model for cardiac surgery-associated acute kidney injury (CSA-AKI). METHODS: Using 69 preoperative variables, we developed several models to predict post-operative AKI in adult patients undergoing cardiac surgery. Models included autoML and non-autoML types, including decision tree (DT), random forest (RF), extreme gradient boosting (XGBoost), and artificial neural network (ANN), as well as a logistic regression prediction model. We then compared model performance using area under the receiver operating characteristic curve (AUROC) and assessed model calibration using Brier score on the independent testing dataset. RESULTS: The incidence of CSA-AKI was 36%. Stacked ensemble autoML had the highest predictive performance among autoML models, and was chosen for comparison with other non-autoML and multivariable logistic regression models. The autoML had the highest AUROC (0.79), followed by RF (0.78), XGBoost (0.77), multivariable logistic regression (0.77), ANN (0.75), and DT (0.64). The autoML had comparable AUROC with RF and outperformed the other models. The autoML was well-calibrated. The Brier score for autoML, RF, DT, XGBoost, ANN, and multivariable logistic regression was 0.18, 0.18, 0.21, 0.19, 0.19, and 0.18, respectively. We applied SHAP and LIME algorithms to our autoML prediction model to extract an explanation of the variables that drive patient-specific predictions of CSA-AKI. CONCLUSION: We were able to present a preoperative autoML prediction model for CSA-AKI that provided high predictive performance that was comparable to RF and superior to other ML and multivariable logistic regression models. The novel approaches of the proposed explainable preoperative autoML prediction model for CSA-AKI may guide clinicians in advancing individualized medicine plans for patients under cardiac surgery.

15.
J Clin Med ; 11(12)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35743357

ABSTRACT

Background: This study aimed to better characterize morbidly obese kidney transplant recipients, their clinical characteristics, and outcomes by using an unsupervised machine learning approach. Methods: Consensus cluster analysis was applied to OPTN/UNOS data from 2010 to 2019 based on recipient, donor, and transplant characteristics in kidney transplant recipients with a pre-transplant BMI ≥ 40 kg/m2. Key cluster characteristics were identified using the standardized mean difference. Post-transplant outcomes, including death-censored graft failure, patient death, and acute allograft rejection, were compared among the clusters. Results: Consensus clustering analysis identified 3204 kidney transplant recipients with a BMI ≥ 40 kg/m2. In this cohort, five clinically distinct clusters were identified. Cluster 1 recipients were predominantly white and non-sensitized, had a short dialysis time or were preemptive, and were more likely to receive living donor kidney transplants. Cluster 2 recipients were older and diabetic. They were likely to have been on dialysis >3 years and receive a standard KDPI deceased donor kidney. Cluster 3 recipients were young, black, and had kidney disease secondary to hypertension or glomerular disease. Cluster 3 recipients had >3 years of dialysis and received non-ECD, young, deceased donor kidney transplants with a KDPI < 85%. Cluster 4 recipients were diabetic with variable dialysis duration who either received non-ECD standard KDPI kidneys or living donor kidney transplants. Cluster 5 recipients were young retransplants that were sensitized. One-year patient survival in clusters 1, 2, 3, 4, and 5 was 98.0%, 94.4%, 98.5%, 98.7%, and 97%, and one-year death-censored graft survival was 98.1%, 93.0%, 96.1%, 98.8%, and 93.0%, respectively. Cluster 2 had the worst one-year patient survival. Clusters 2 and 5 had the worst one-year death-censored graft survival. Conclusions: With the application of unsupervised machine learning, variable post-transplant outcomes are observed among morbidly obese kidney transplant recipients. Recipients with earlier access to transplant and living donation show superior outcomes. Unexpectedly, reduced graft survival in cluster 3 recipients perhaps underscores socioeconomic access to post-transplant support and minorities being disadvantaged in access to preemptive and living donor transplants. Despite obesity-related concerns, one-year patient and graft survival were favorable in all clusters, and obesity itself should be reconsidered as a hard barrier to kidney transplantation.

16.
J Pers Med ; 12(6)2022 May 25.
Article in English | MEDLINE | ID: mdl-35743647

ABSTRACT

Background: There have been concerns regarding increased perioperative mortality, length of hospital stay, and rates of graft loss in kidney transplant recipients with functional limitations. The application of machine learning consensus clustering approach may provide a novel understanding of unique phenotypes of functionally limited kidney transplant recipients with distinct outcomes in order to identify strategies to improve outcomes. Methods: Consensus cluster analysis was performed based on recipient-, donor-, and transplant-related characteristics in 3205 functionally limited kidney transplant recipients (Karnofsky Performance Scale (KPS) < 40% at transplant) in the OPTN/UNOS database from 2010 to 2019. Each cluster's key characteristics were identified using the standardized mean difference. Posttransplant outcomes, including death-censored graft failure, patient death, and acute allograft rejection were compared among the clusters Results: Consensus cluster analysis identified two distinct clusters that best represented the clinical characteristics of kidney transplant recipients with limited functional status prior to transplant. Cluster 1 patients were older in age and were more likely to receive deceased donor kidney transplant with a higher number of HLA mismatches. In contrast, cluster 2 patients were younger, had shorter dialysis duration, were more likely to be retransplants, and were more likely to receive living donor kidney transplants from HLA mismatched donors. As such, cluster 2 recipients had a higher PRA, less cold ischemia time, and lower proportion of machine-perfused kidneys. Despite having a low KPS, 5-year patient survival was 79.1 and 83.9% for clusters 1 and 2; 5-year death-censored graft survival was 86.9 and 91.9%. Cluster 1 had lower death-censored graft survival and patient survival but higher acute rejection, compared to cluster 2. Conclusion: Our study used an unsupervised machine learning approach to characterize kidney transplant recipients with limited functional status into two clinically distinct clusters with differing posttransplant outcomes.

17.
J Clin Med ; 11(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35456205

ABSTRACT

Over the past decade, the number of organ transplants performed worldwide has significantly increased for patients with advanced organ failure [...].

18.
Clin Cardiol ; 45(4): 407-416, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35170775

ABSTRACT

BACKGROUND: Real-world data on atrial fibrillation (AF) ablation outcomes in obese populations have remained scarce, especially the relationship between obesity and in-hospital AF ablation outcome. HYPOTHESIS: Obesity is associated with higher complication rates and higher admission trend for AF ablation. METHODS: We drew data from the US National Inpatient Sample to identify patients who underwent AF ablation between 2005 and 2018. Sociodemographic and patients' characteristics data were collected, and the trend, incidence of catheter ablation complications and mortality were analyzed, and further stratified by obesity classification. RESULTS: A total of 153 429 patients who were hospitalized for AF ablation were estimated. Among these, 11 876 obese patients (95% confidence interval [CI]: 11 422-12 330) and 10 635 morbid obese patients (95% CI: 10 200-11 069) were observed. There was a substantial uptrend admission, up to fivefold, for AF ablation in all obese patients from 2005 to 2018 (p < .001). Morbidly obese patients were statistically younger, while coexisting comorbidities were substantially higher than both obese and nonobese patients (p < .01) Both obesity and morbid obesity were significantly associated with an increased risk of total bleeding, and vascular complications (p < .05). Only morbid obesity was significantly associated with an increased risk of ablation-related complications, total infection, and pulmonary complications (p < .01). No difference in-hospital mortality was observed among obese, morbidly obese, and nonobese patients. CONCLUSION: Our study observed an uptrend in the admission of obese patients undergoing AF ablation from 2005 through 2018. Obesity was associated with higher ablation-related complications, particularly those who were morbidly obese.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Obesity, Morbid , Atrial Fibrillation/diagnosis , Atrial Fibrillation/epidemiology , Atrial Fibrillation/surgery , Catheter Ablation/adverse effects , Hospitals , Humans , Obesity, Morbid/complications , Obesity, Morbid/diagnosis , Obesity, Morbid/epidemiology , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Risk Factors , Treatment Outcome
19.
J Cardiovasc Electrophysiol ; 33(3): 401-411, 2022 03.
Article in English | MEDLINE | ID: mdl-35018675

ABSTRACT

INTRODUCTION: Real-world data on atrial fibrillation (AF) ablation among moderate and advanced chronic kidney disease (CKD) patients have so far remained scarce, especially in-hospital AF ablation outcomes. METHODS: We drew data from the US National Inpatient Sample to identify hospitalized patients who underwent AF ablation between 2005 and 2018, and further stratified by CKD classification. We assessed the trend of AF ablation, as well as its complications. RESULTS: A total of 152 630 patients who were primarily hospitalized for AF and underwent ablation were estimated. Among these, CKD patients were found in a total of 1509 participants, with 978, 206, and 325 under CKD3, CKD4, and CKD5/ESKD, respectively. There was a significant increment in admission rates for AF ablation in the CKD population across all CKD classifications (p < .001). All CKD patients were statistically older, with higher coexisting comorbidities, while hypertension was found substantially lower than non-CKD patients (p ≤ .001). Importantly, CKD, especially CKD3 and CKD5/ESKD, was significantly associated with an increased risk of total complications, and total bleeding, Neurological complications were found statistically lower in CKD patients (p = .029), and no mortality rates were significantly different (p = .287). CONCLUSION: Our study observed an increase in admission trends for AF ablation among moderate and advanced CKD patients from 2005 to 2018. CKD was strongly associated with higher procedure-related complications and bleeding, but neurological safety profiles and mortalities rates were nonsignificantly different.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Renal Insufficiency, Chronic , Atrial Fibrillation/diagnosis , Atrial Fibrillation/epidemiology , Atrial Fibrillation/surgery , Catheter Ablation/adverse effects , Hospitals , Humans , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/epidemiology , Risk Factors , Treatment Outcome
20.
World J Crit Care Med ; 10(6): 390-400, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34888164

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a common and severe complication after left ventricular assist device (LVAD) implantation with an incidence of 37%; 13% of which require kidney replacement therapy (KRT). Severe AKI requiring KRT (AKI-KRT) in LVAD patients is associated with high short and long-term mortality compared with AKI without KRT. While kidney function recovery is associated with better outcomes, its incidence is unclear among LVAD patients with severe AKI requiring KRT. AIM: To identify studies evaluating the recovery rates from severe AKI-KRT after LVAD placement, which is defined by regained kidney function resulting in the discontinuation of KRT. Random-effects and generic inverse variance method of DerSimonian-Laird were used to combine the effect estimates obtained from individual studies. METHODS: A total of 268 patients from 14 cohort studies that reported severe AKI-KRT after LVAD were included. Follow-up time ranged anywhere from two weeks of LVAD implantation to 12 mo. Kidney recovery occurred in 78% of enrollees at the time of hospital discharge or within 30 d. Overall, the pooled estimated AKI recovery rate among patients with severe AKI-KRT was 50.5% (95%CI: 34.0%-67.0%) at 12 mo follow up. Majority (85%) of patients used continuous-flow LVAD. While the data on pulsatile-flow LVAD was limited, subgroup analysis of continuous-flow LVAD demonstrated that pooled estimated AKI recovery rate among patients with severe AKI-KRT was 52.1% (95%CI: 36.8%-67.0%). Meta-regression analysis did not show a significant association between study year and AKI recovery rate (P = 0.08). There was no publication bias as assessed by the funnel plot and Egger's regression asymmetry test in all analyses. RESULTS: A total of 268 patients from 14 cohort studies that reported severe AKI-KRT after LVAD were included. Follow-up time ranged anywhere from two weeks of LVAD implantation to 12 mo. Kidney recovery occurred in 78% of enrollees at the time of hospital discharge or within 30 d. Overall, the pooled estimated AKI recovery rate among patients with severe AKI-KRT was 50.5% (95%CI: 34.0%-67.0%) at 12 mo follow up. Majority (85%) of patients used continuous-flow LVAD. While the data on pulsatile-flow LVAD was limited, subgroup analysis of continuous-flow LVAD demonstrated that pooled estimated AKI recovery rate among patients with severe AKI-KRT was 52.1% (95%CI: 36.8%-67.0%). Meta-regression analysis did not show a significant association between study year and AKI recovery rate (P = 0.08). There was no publication bias as assessed by the funnel plot and Egger's regression asymmetry test in all analyses. CONCLUSION: Recovery from severe AKI-KRT after LVAD occurs approximately 50.5%, and it has not significantly changed over the years despite advances in medicine.

SELECTION OF CITATIONS
SEARCH DETAIL
...