Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Virol ; 93(5): 2899-2907, 2021 05.
Article in English | MEDLINE | ID: mdl-33410223

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Chains of infections starting from various countries worldwide seeded the outbreak of COVID-19 in Athens, capital city of Greece. A full-genome analysis of isolates from Athens' hospitals and other healthcare providers revealed the variety of SARS-CoV-2 that initiated the pandemic before lockdown and passenger flight restrictions. A dominant variant, encompassing the G614D amino acid substitution, spread through a major virus dispersal event, and sporadic introductions of rare variants characterized the local initiation of the epidemic. Mutations within the genome highlighted the genetic drift of the virus as rare variants emerged. An important variant contained a premature stop codon in orf7a leading to the truncation of a possibly important for viral pathogenesis domain. This study may serve as a reference for resolving future lines of infection in the area, especially after resumption of passenger flight connections to Athens and Greece during summer of 2020.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Pandemics , SARS-CoV-2/genetics , Computational Biology , Genetic Variation , Greece/epidemiology , High-Throughput Nucleotide Sequencing , Humans , Mutation , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , Sequence Alignment , Viral Proteins/genetics
2.
Hum Vaccin Immunother ; 14(9): 2310-2317, 2018.
Article in English | MEDLINE | ID: mdl-29708816

ABSTRACT

The aim of this study was to evaluate the ability of influenza immunization to evoke a protective immune response among children with cancer. We evaluated 75 children with cancer who received influenza vaccination. Hemagglutination Inhibition Antibody titers were determined before and after vaccination. The protective rates after vaccination were 79% for H1N1, 75% for H3N2 and 59% for influenza B virus whereas the seroconversion rates were 54%, 44% and 43% respectively. The differences pre- and post-vaccination were significant regardless the method which was used: seroprotection changes, seroconversion and geometric mean titers analyses. Variables such as the pre-vaccination antibody titers, the time when the responses were measured after the vaccination, the age and the type of malignancy as well as the absolute lymphocyte count were found to be correlated with the immune response but the findings were different for each vaccine subunit. In conclusion, influenza vaccination provides protection in a remarkable proportion of pediatric cancer patients whereas this protection is more obvious against H1N1 and H3N2 compared to influenza B. The immune response after vaccination is significant and seems to be influenced by a variety of factors.


Subject(s)
Antibodies, Viral/blood , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza B virus/immunology , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Neoplasms/complications , Adolescent , Child , Child, Preschool , Female , Hemagglutination Inhibition Tests , Humans , Infant , Influenza Vaccines/administration & dosage , Male , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...