Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Rep ; 25(3): 1130-1155, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38291337

ABSTRACT

The correct establishment of DNA methylation patterns is vital for mammalian development and is achieved by the de novo DNA methyltransferases DNMT3A and DNMT3B. DNMT3B localises to H3K36me3 at actively transcribing gene bodies via its PWWP domain. It also functions at heterochromatin through an unknown recruitment mechanism. Here, we find that knockout of DNMT3B causes loss of methylation predominantly at H3K9me3-marked heterochromatin and that DNMT3B PWWP domain mutations or deletion result in striking increases of methylation in H3K9me3-marked heterochromatin. Removal of the N-terminal region of DNMT3B affects its ability to methylate H3K9me3-marked regions. This region of DNMT3B directly interacts with HP1α and facilitates the bridging of DNMT3B with H3K9me3-marked nucleosomes in vitro. Our results suggest that DNMT3B is recruited to H3K9me3-marked heterochromatin in a PWWP-independent manner that is facilitated by the protein's N-terminal region through an interaction with a key heterochromatin protein. More generally, we suggest that DNMT3B plays a role in DNA methylation homeostasis at heterochromatin, a process which is disrupted in cancer, aging and Immunodeficiency, Centromeric Instability and Facial Anomalies (ICF) syndrome.


Subject(s)
DNA Methylation , Face/abnormalities , Heterochromatin , Primary Immunodeficiency Diseases , Animals , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Mutation , Mammals/genetics , Mammals/metabolism
2.
PLoS Genet ; 19(10): e1010958, 2023 10.
Article in English | MEDLINE | ID: mdl-37782664

ABSTRACT

High-throughput sequencing technology is central to our current understanding of the human methylome. The vast majority of studies use chemical conversion to analyse bulk-level patterns of DNA methylation across the genome from a population of cells. While this technology has been used to probe single-molecule methylation patterns, such analyses are limited to short reads of a few hundred basepairs. DNA methylation can also be directly detected using Nanopore sequencing which can generate reads measuring megabases in length. However, thus far these analyses have largely focused on bulk-level assessment of DNA methylation. Here, we analyse DNA methylation in single Nanopore reads from human lymphoblastoid cells, to show that bulk-level metrics underestimate large-scale heterogeneity in the methylome. We use the correlation in methylation state between neighbouring sites to quantify single-molecule heterogeneity and find that heterogeneity varies significantly across the human genome, with some regions having heterogeneous methylation patterns at the single-molecule level and others possessing more homogeneous methylation patterns. By comparing the genomic distribution of the correlation to epigenomic annotations, we find that the greatest heterogeneity in single-molecule patterns is observed within heterochromatic partially methylated domains (PMDs). In contrast, reads originating from euchromatic regions and gene bodies have more ordered DNA methylation patterns. By analysing the patterns of single molecules in more detail, we show the existence of a nucleosome-scale periodicity in DNA methylation that accounts for some of the heterogeneity we uncover in long single-molecule DNA methylation patterns. We find that this periodic structure is partially masked in bulk data and correlates with DNA accessibility as measured by nanoNOMe-seq, suggesting that it could be generated by nucleosomes. Our findings demonstrate the power of single-molecule analysis of long-read data to understand the structure of the human methylome.


Subject(s)
DNA Methylation , Nucleosomes , Humans , Nucleosomes/genetics , DNA Methylation/genetics , Heterochromatin/genetics , DNA , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA
4.
Nat Commun ; 14(1): 3636, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37336879

ABSTRACT

DNA repair defects underlie many cancer syndromes. We tested whether de novo germline mutations (DNMs) are increased in families with germline defects in polymerase proofreading or base excision repair. A parent with a single germline POLE or POLD1 mutation, or biallelic MUTYH mutations, had 3-4 fold increased DNMs over sex-matched controls. POLE had the largest effect. The DNMs carried mutational signatures of the appropriate DNA repair deficiency. No DNM increase occurred in offspring of MUTYH heterozygous parents. Parental DNA repair defects caused about 20-150 DNMs per child, additional to the ~60 found in controls, but almost all extra DNMs occurred in non-coding regions. No increase in post-zygotic mutations was detected, excepting a child with bi-allelic MUTYH mutations who was excluded from the main analysis; she had received chemotherapy and may have undergone oligoclonal haematopoiesis. Inherited DNA repair defects associated with base pair-level mutations increase DNMs, but phenotypic consequences appear unlikely.


Subject(s)
Colorectal Neoplasms , Germ-Line Mutation , Child , Female , Humans , Syndrome , Mutation , Colorectal Neoplasms/genetics , DNA Repair/genetics , Germ Cells
5.
Nat Commun ; 12(1): 694, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33514701

ABSTRACT

The aberrant gain of DNA methylation at CpG islands is frequently observed in colorectal tumours and may silence the expression of tumour suppressors such as MLH1. Current models propose that these CpG islands are targeted by de novo DNA methyltransferases in a sequence-specific manner, but this has not been tested. Using ectopically integrated CpG islands, here we find that aberrantly methylated CpG islands are subject to low levels of de novo DNA methylation activity in colorectal cancer cells. By delineating DNA methyltransferase targets, we find that instead de novo DNA methylation activity is targeted primarily to CpG islands marked by the histone modification H3K36me3, a mark associated with transcriptional elongation. These H3K36me3 marked CpG islands are heavily methylated in colorectal tumours and the normal colon suggesting that de novo DNA methyltransferase activity at CpG islands in colorectal cancer is focused on similar targets to normal tissues and not greatly remodelled by tumourigenesis.


Subject(s)
Colorectal Neoplasms/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , Gene Expression Regulation, Neoplastic , Histone Code/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Chromatin Immunoprecipitation Sequencing , Colon/pathology , Colorectal Neoplasms/pathology , CpG Islands/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , Datasets as Topic , Epigenesis, Genetic , Gene Knockout Techniques , Histones/genetics , Humans , Promoter Regions, Genetic/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...