Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Am J Hum Genet ; 95(6): 698-707, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25434003

ABSTRACT

Mutations in components of the major spliceosome have been described in disorders with craniofacial anomalies, e.g., Nager syndrome and mandibulofacial dysostosis type Guion-Almeida. The U5 spliceosomal complex of eight highly conserved proteins is critical for pre-mRNA splicing. We identified biallelic mutations in TXNL4A, a member of this complex, in individuals with Burn-McKeown syndrome (BMKS). This rare condition is characterized by bilateral choanal atresia, hearing loss, cleft lip and/or palate, and other craniofacial dysmorphisms. Mutations were found in 9 of 11 affected families. In 8 families, affected individuals carried a rare loss-of-function mutation (nonsense, frameshift, or microdeletion) on one allele and a low-frequency 34 bp deletion (allele frequency 0.76%) in the core promoter region on the other allele. In a single highly consanguineous family, formerly diagnosed as oculo-oto-facial dysplasia, the four affected individuals were homozygous for a 34 bp promoter deletion, which differed from the promoter deletion in the other families. Reporter gene and in vivo assays showed that the promoter deletions led to reduced expression of TXNL4A. Depletion of TXNL4A (Dib1) in yeast demonstrated reduced assembly of the tri-snRNP complex. Our results indicate that BMKS is an autosomal-recessive condition, which is frequently caused by compound heterozygosity of low-frequency promoter deletions in combination with very rare loss-of-function mutations.


Subject(s)
Choanal Atresia/genetics , Deafness/congenital , Gene Deletion , Heart Defects, Congenital/genetics , Promoter Regions, Genetic/genetics , Ribonucleoprotein, U5 Small Nuclear/genetics , Spliceosomes/genetics , Alleles , Child, Preschool , Choanal Atresia/diagnosis , Deafness/diagnosis , Deafness/genetics , Exosomes/genetics , Facies , Female , Gene Expression Profiling , Gene Frequency , Genes, Reporter , Heart Defects, Congenital/diagnosis , Heterozygote , Homozygote , Humans , Male , Mutation , Oligonucleotide Array Sequence Analysis , Pedigree , Phenotype , Ribonucleoprotein, U5 Small Nuclear/metabolism , Sequence Analysis, DNA , Spliceosomes/metabolism
2.
Genome Res ; 24(4): 592-603, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24642863

ABSTRACT

Genome-wide association studies (GWAS) identified the MEIS1 locus for Restless Legs Syndrome (RLS), but causal single nucleotide polymorphisms (SNPs) and their functional relevance remain unknown. This locus contains a large number of highly conserved noncoding regions (HCNRs) potentially functioning as cis-regulatory modules. We analyzed these HCNRs for allele-dependent enhancer activity in zebrafish and mice and found that the risk allele of the lead SNP rs12469063 reduces enhancer activity in the Meis1 expression domain of the murine embryonic ganglionic eminences (GE). CREB1 binds this enhancer and rs12469063 affects its binding in vitro. In addition, MEIS1 target genes suggest a role in the specification of neuronal progenitors in the GE, and heterozygous Meis1-deficient mice exhibit hyperactivity, resembling the RLS phenotype. Thus, in vivo and in vitro analysis of a common SNP with small effect size showed allele-dependent function in the prospective basal ganglia representing the first neurodevelopmental region implicated in RLS.


Subject(s)
Enhancer Elements, Genetic , Homeodomain Proteins/genetics , Neoplasm Proteins/genetics , Restless Legs Syndrome/genetics , Telencephalon/growth & development , Alleles , Animals , Basal Ganglia/metabolism , Basal Ganglia/pathology , Disease Models, Animal , Genome-Wide Association Study , Introns , Mice , Myeloid Ecotropic Viral Integration Site 1 Protein , Polymorphism, Single Nucleotide , Telencephalon/pathology
3.
Mov Disord ; 29(1): 143-7, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24151159

ABSTRACT

BACKGROUND: Rare autosomal-dominant mutations in ANO3 and GNAL have been recently shown to represent novel genetic factors underlying primary torsion dystonia (PTD) with predominantly craniocervical involvement. METHODS: We used high-resolution melting to screen all exons of ANO3 and GNAL for rare sequence variants in a population of 342 German individuals with mainly sporadic PTD and 376 general population controls. RESULTS: We identified 2 novel missense variants in ANO3 (p.Ile833Val and p.Gly973Arg) and 1 novel missense variant in GNAL (p.Val146Met) in three different nonfamilial cases. Variant carriers presented with adult-onset dystonia involving the neck and/or face. In controls, 3 rare ANO3 missense variants (p.Tyr235Cys, p.Asn256Ser, and p.Pro893Leu) but no rare nonsynonymous GNAL variants were present. CONCLUSIONS: GNAL variants seem to be a rare cause of PTD in our mainly sporadic German sample. Low frequency missense variants in ANO3 occur in both cases and controls, warranting further assessment of this gene in PTD pathogenesis.


Subject(s)
Chloride Channels/genetics , Dystonia Musculorum Deformans/genetics , GTP-Binding Protein alpha Subunits/genetics , Mutation, Missense , Adult , Aged , Aged, 80 and over , Anoctamins , Female , Humans , Male , Middle Aged , Young Adult
4.
Mov Disord Clin Pract ; 1(3): 161-172, 2014 Sep.
Article in English | MEDLINE | ID: mdl-30363981

ABSTRACT

A link between restless legs syndrome (RLS) and iron has been recognized for several decades. Yet, the precise role that iron or other components of iron metabolism play in bringing about RLS is still a matter of debate. During the last few years, many new pieces of evidence from genetics, pathology, imaging, and clinical studies have surfaced. However, the way this evidence fits into the larger picture of RLS as a disease is not always easily understood. To provide a better understanding of the complex interplay between iron metabolism and RLS and highlight areas that need further elucidation, we systematically and critically review the current literature on the role of iron in RLS pathophysiology and treatment with a special emphasis on genetics, neuropathology, cell and animal models, imaging studies, and therapy.

6.
PLoS Genet ; 7(7): e1002171, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21779176

ABSTRACT

Restless legs syndrome (RLS) is a sensorimotor disorder with an age-dependent prevalence of up to 10% in the general population above 65 years of age. Affected individuals suffer from uncomfortable sensations and an urge to move in the lower limbs that occurs mainly in resting situations during the evening or at night. Moving the legs or walking leads to an improvement of symptoms. Concomitantly, patients report sleep disturbances with consequences such as reduced daytime functioning. We conducted a genome-wide association study (GWA) for RLS in 922 cases and 1,526 controls (using 301,406 SNPs) followed by a replication of 76 candidate SNPs in 3,935 cases and 5,754 controls, all of European ancestry. Herein, we identified six RLS susceptibility loci of genome-wide significance, two of them novel: an intergenic region on chromosome 2p14 (rs6747972, P = 9.03 × 10(-11), OR = 1.23) and a locus on 16q12.1 (rs3104767, P = 9.4 × 10(-19), OR = 1.35) in a linkage disequilibrium block of 140 kb containing the 5'-end of TOX3 and the adjacent non-coding RNA BC034767.


Subject(s)
Chromosomes, Human, Pair 16/genetics , Chromosomes, Human, Pair 2/genetics , Genetic Loci/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Restless Legs Syndrome/genetics , Humans , Polymorphism, Single Nucleotide/genetics , Reproducibility of Results , Risk Factors
7.
J Med Genet ; 48(7): 462-6, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21572129

ABSTRACT

BACKGROUND: Restless legs syndrome (RLS) is a sleep related movement disorder that occurs both in an idiopathic form and in symptomatic varieties. RLS is a frequent and distressing comorbidity in end stage renal disease (ESRD). For idiopathic RLS (iRLS), genetic risk factors have been identified, but their role in RLS in ESRD has not been investigated yet. Therefore, a case-control association study of these variants in ESRD patients was performed. METHODS: The study genotyped 10 iRLS associated variants at four loci encompassing the genes MEIS1, BTBD9, MAP2K5/SKOR1, and PTPRD, in two independent case-control samples from Germany and Greece using multiplex PCR and MALDI-TOF (matrix assisted laser desorption/ionisation time-of-flight) mass spectrometry. Statistical analysis was performed as logistic regression with age and gender as covariates. For the combined analysis a Cochran-Mantel-Haenszel test was applied. RESULTS: The study included 200 RLS-positive and 443 RLS-negative ESRD patients in the German sample, and 141 and 393 patients, respectively, in the Greek sample. In the German sample, variants in MEIS1 and BTBD9 were associated with RLS in ESRD (P(nom)≤0.004, ORs 1.52 and 1.55), whereas, in the Greek sample, there was a trend for association to MAP2K5/SKOR1 and BTBD9 (P(nom)≤0.08, ORs 1.41 and 1.33). In the combined analysis including all samples, BTBD9 was associated after correction for multiple testing (P(corrected)=0.0013, OR 1.47). CONCLUSIONS: This is the first demonstration of a genetic influence on RLS in ESRD patients with BTBD9 being significantly associated. The extent of the genetic predisposition could vary between different subgroups of RLS in ESRD.


Subject(s)
Genetic Association Studies , Homeodomain Proteins/genetics , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/genetics , Neoplasm Proteins/genetics , Restless Legs Syndrome/etiology , Restless Legs Syndrome/genetics , Transcription Factors/genetics , Aged , Alleles , Case-Control Studies , Female , Gene Frequency , Germany , Greece , Humans , Male , Middle Aged , Myeloid Ecotropic Viral Integration Site 1 Protein , Nerve Tissue Proteins , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...