Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Nephrol ; 55(2): 214-224, 2024.
Article in English | MEDLINE | ID: mdl-37742620

ABSTRACT

INTRODUCTION: The chemokine receptor CCR4 is expressed by diverse CD4+ T cell subsets including regulatory T cells (Tregs) but its functional importance for leukocyte recruitment and the relevance of its two corresponding chemokines CCL17 and CCL22 have not been studied in immune-mediated crescentic glomerulonephritis (cGN). METHODS: Utilizing the single-cell RNA sequencing (scRNAseq) data in analyzing leukocytes isolated from both human and murine nephritic kidneys, we identified CCL17 as a potential therapeutic target in immune-mediated renal disease. Using a mouse model of murine cGN, we then delineated the effects of targeting CCL17 by neutralizing antibodies and in Ccl17 gene-deficient mice. RESULTS: Unsupervised scRNAseq analyses identified the CCL17-CCR4 axis as a mechanism potentially involved in renal T-cell migration. Analyses of functional kidney impairment and histopathological kidney damage revealed an attenuation of crescentic GN in anti-CCL17 antibody-treated mice which was corroborated using in Ccl17 gene-deficient mice. Immunohistochemical analyses revealed that these changes were accompanied by an affected renal Treg recruitment in both experimental approaches. CONCLUSION: The chemokine receptor CCR4 and its corresponding chemokine CCL17 are expressed in human and murine cGN and targeting the CCR4-CCL17 axis by neutralizing antibodies as well as Ccl17 gene deficiency led to increased renal Treg recruitment and reduced histological and functional kidney damage in murine cGN.


Subject(s)
Chemokine CCL17 , Glomerulonephritis , Animals , Humans , Mice , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Kidney , Monocytes , Receptors, CCR4 , Receptors, Chemokine , T-Lymphocytes, Regulatory
2.
Sci Transl Med ; 15(687): eadd6137, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36921033

ABSTRACT

GM-CSF in glomerulonephritisDespite glomerulonephritis being an immune-mediated disease, the contributions of individual immune cell types are not clear. To address this gap in knowledge, Paust et al. characterized pathological immune cells in samples from patients with glomerulonephritis and in samples from mice with the disease. The authors found that CD4+ T cells producing granulocyte-macrophage colony-stimulating factor (GM-CSF) licensed monocytes to promote disease by producing matrix metalloproteinase 12 and disrupting the glomerular basement membrane. Targeting GM-CSF to inhibit this axis reduced disease severity in mice, implicating this cytokine as a potential therapeutic target for patients with glomerulonephritis. -CM.


Subject(s)
Glomerulonephritis , Granulocyte-Macrophage Colony-Stimulating Factor , Mice , Animals , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Monocytes/metabolism , Matrix Metalloproteinase 12/metabolism , CD4-Positive T-Lymphocytes , Glomerulonephritis/metabolism
3.
JCI Insight ; 8(1)2023 01 10.
Article in English | MEDLINE | ID: mdl-36355429

ABSTRACT

Glucocorticoids remain a cornerstone of therapeutic regimes for autoimmune and chronic inflammatory diseases - for example, in different forms of crescentic glomerulonephritis - because of their rapid antiinflammatory effects, low cost, and wide availability. Despite their routine use for decades, the underlying cellular mechanisms by which steroids exert their therapeutic effects need to be fully elucidated. Here, we demonstrate that high-dose steroid treatment rapidly reduced the number of proinflammatory CXCR3+CD4+ T cells in the kidney by combining high-dimensional single-cell and morphological analyses of kidney biopsies from patients with antineutrophil cytoplasmic antibody-associated (ANCA-associated) crescentic glomerulonephritis. Using an experimental model of crescentic glomerulonephritis, we show that the steroid-induced decrease in renal CD4+ T cells is a consequence of reduced T cell recruitment, which is associated with an ameliorated disease course. Mechanistic in vivo and in vitro studies revealed that steroids act directly on renal tissue cells, such as tubular epithelial cells, but not on T cells, which resulted in an abolished renal expression of CXCL9 and CXCL10 as well as in the prevention of CXCR3+CD4+ T cell recruitment to the inflamed kidneys. Thus, we identified the CXCL9/CXCL10-CXCR3 axis as a previously unrecognized cellular and molecular target of glucocorticoids providing protection from immune-mediated pathology.


Subject(s)
Glomerulonephritis , Glucocorticoids , Humans , Glucocorticoids/pharmacology , Kidney/pathology , CD4-Positive T-Lymphocytes , Chemokine CXCL9 , Chemokine CXCL10/metabolism , Receptors, CXCR3/metabolism
4.
J Am Soc Nephrol ; 32(12): 3081-3098, 2021 12.
Article in English | MEDLINE | ID: mdl-35167487

ABSTRACT

BACKGROUND: IL-17A-producing CD4+ T helper (TH17) cells play a critical role in autoimmune and chronic inflammatory diseases, such as crescentic GN. The proinflammatory effects of IL-17 are mediated by the activation of the IL-17RA/IL-17RC complex. Although the expression of these receptors on epithelial and endothelial cells is well characterized, the IL-17 receptor expression pattern and function on hematopoietic cells, e.g., CD4+ T cell subsets, remains to be elucidated. METHODS: Crescentic GN (nephrotoxic nephritis) was induced in IL-17A, IFNγ, and Foxp3 triple-reporter mice for sorting of renal CD4+ T cell subsets and subsequent single-cell RNA sequencing. Moreover, we generated TH17 cell-specific IL-17RA and IL-17RC gene-deficient mice and studied the functional role of IL-17 signaling in TH17 cells in crescentic GN, imiquimod-induced psoriasis, and in the CD4+CD45RBhigh T cell transfer colitis model. RESULTS: We identified a specific expression of the IL-17 receptor A/C complex on CD4+ TH17 cells. Single-cell RNA sequencing of TH17 cells revealed the activation of the IL-17 receptor signaling pathway in experimental crescentic GN. Disruption of the IL-17RC signaling pathway in CD4+ T cells and, most importantly, specifically in CD4+ TH17 cells, potentiates the IL-17 cytokine response and results in an accelerated course of experimental crescentic GN. Comparable results were observed in experimental models of psoriasis and colitis. CONCLUSIONS: Our findings indicate that IL-17 receptor C signaling has a previously unrecognized function in the regulation of CD4+ TH17 cells and in the control of organ-specific autoimmunity and might provide new insights into the development of more efficient anti-TH17 treatment strategies.


Subject(s)
Glomerulonephritis/etiology , Receptors, Interleukin/physiology , Animals , CD4-Positive T-Lymphocytes/immunology , Glomerulonephritis/immunology , Interleukin-17/biosynthesis , Male , Mice , Mice, Inbred C57BL , Psoriasis/etiology , Receptors, Interleukin-17/physiology , Signal Transduction/physiology , Th17 Cells/immunology
5.
J Am Soc Nephrol ; 29(4): 1210-1222, 2018 04.
Article in English | MEDLINE | ID: mdl-29483158

ABSTRACT

The IL-17 cytokine family and the cognate receptors thereof have a unique role in organ-specific autoimmunity. Most studies have focused on the founding member of the IL-17 family, IL-17A, as the central mediator of diseases. Indeed, although pathogenic functions have been ascribed to IL-17A and IL-17F in the context of immune-mediated glomerular diseases, the specific functions of the other IL-17 family members in immunity and inflammatory kidney diseases is largely unknown. Here, we report that compared with healthy controls, patients with acute Anti-neutrophil cytoplasmatic antibody (ANCA)-associated crescentic glomerulonephritis (GN) had significantly elevated serum levels of IL-17C (but not IL-17A, F, or E). In mouse models of crescentic GN (nephrotoxic nephritis) and pristane-induced lupus nephritis, deficiency in IL-17C significantly ameliorated the course of GN in terms of renal tissue injury and kidney function. Deficiency of the unique IL-17C receptor IL-17 receptor E (IL-17RE) provided similar protection against crescentic GN. These protective effects associated with a reduced TH17 response. Bone marrow transplantation experiments revealed that IL-17C is produced by tissue-resident cells, but not by lymphocytes. Finally, IL-17RE was highly expressed by CD4+ TH17 cells, and loss of this expression prevented the TH17 responses and subsequent tissue injury in crescentic GN. Our findings indicate that IL-17C promotes TH17 cell responses and immune-mediated kidney disease via IL-17RE expressed on CD4+ TH17 cells. Targeting the IL-17C/IL-17RE pathway may present an intriguing therapeutic strategy for TH17-induced autoimmune disorders.


Subject(s)
Autoimmune Diseases/immunology , CD4-Positive T-Lymphocytes/immunology , Glomerulonephritis/immunology , Interleukin-17/blood , Interleukin-17/physiology , Receptors, Interleukin-17/physiology , Th17 Cells/immunology , Animals , Antibodies, Antineutrophil Cytoplasmic/immunology , Autoimmune Diseases/blood , Autoimmune Diseases/pathology , Autoimmune Diseases/prevention & control , Glomerulonephritis/blood , Glomerulonephritis/pathology , Glomerulonephritis/prevention & control , Humans , Interleukin-17/biosynthesis , Interleukin-17/deficiency , Interleukin-17/genetics , Kidney/immunology , Kidney/pathology , Lupus Nephritis/chemically induced , Lupus Nephritis/immunology , Lupus Nephritis/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Targeted Therapy , RNA, Messenger/biosynthesis , Radiation Chimera , Receptors, Interleukin-17/biosynthesis , Receptors, Interleukin-17/deficiency , Receptors, Interleukin-17/genetics , Terpenes/toxicity , Up-Regulation
6.
J Am Soc Nephrol ; 27(7): 1933-42, 2016 07.
Article in English | MEDLINE | ID: mdl-26534920

ABSTRACT

Chemokines and chemokine receptors are implicated in regulatory T cell (Treg) trafficking to sites of inflammation and suppression of excessive immune responses in inflammatory and autoimmune diseases; however, the specific requirements for Treg migration into the inflamed organs and the positioning of these cells within the tissue are incompletely understood. Here, we report that Tregs expressing the TH1-associated chemokine receptor CXCR3 are enriched in the kidneys of patients with ANCA-associated crescentic GN and colocalize with CXCR3(+) effector T cells. To investigate the functional role of CXCR3(+) Tregs, we generated mice that lack CXCR3 in Tregs specifically (Foxp3(eGFP-Cre) × Cxcr3(fl/fl)) and induced experimental crescentic GN. Treg-specific deletion of CXCR3 resulted in reduced Treg recruitment to the kidney and an overwhelming TH1 immune response, with an aggravated course of the nephritis that was reversible on anti-IFNγ treatment. Together, these findings show that a subset of Tregs expresses CXCR3 and thereby, acquires trafficking properties of pathogenic CXCR3(+) TH1 cells, allowing Treg localization and control of excessive TH1 responses at sites of inflammation.


Subject(s)
Glomerulonephritis/immunology , Receptors, CXCR3 , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology , Animals , Glomerulonephritis/pathology , Male , Mice
7.
Arthritis Rheumatol ; 67(2): 475-87, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25385550

ABSTRACT

OBJECTIVE: The CD4+ T cell immune response plays a pivotal role in the immunopathogenesis of human and experimental lupus nephritis, but the contribution of the Th17/interleukin-17 (IL-17) immune pathway to renal tissue injury in systemic lupus erythematosus (SLE) remains to be elucidated. The aim of this study was to characterize the function of the Th17/IL-17A immune response in 2 murine models of lupus nephritis. METHODS: IL-17A-deficient MRL/MPJ-Fas(lpr) /2J (MRL/lpr) mice were generated, and the clinical course of nephritis was monitored by assessing the levels of albuminuria, extent of renal tissue injury, and functional parameters. In addition, lupus-prone (NZB × NZW)F1 (NZB/NZW) mice were treated with anti-IL-17A and anti-interferon-γ (anti-IFNγ) antibodies, and their effects on the clinical course of lupus nephritis were assessed. RESULTS: Characterization of renal IL-17A-producing and IFNγ-producing T cells in MRL/lpr and NZB/NZW mice revealed low numbers of infiltrating CD3+IL-17A+ cells. Renal IL-17A was mainly produced by CD4/CD8 double-negative CD3+ T cells and CD4+ Th17 cells. In contrast, the number of renal CD3+IFNγ+ cells continuously increased over time and largely consisted of typical CD4+ Th1 cells. IL-17A deficiency did not affect the morphologic or functional parameters in MRL/lpr mice with lupus nephritis, nor did IL-17A neutralization affect the clinical course of nephritis in NZB/NZW mice, but anti-IFNγ treatment attenuated the severity of the disease. CONCLUSION: The Th17/IL-17A immune response plays no major role in the immunopathogenesis of lupus nephritis in MRL/lpr and NZB/NZW mice. Thus, the results of this study do not support the hypothesis that IL-17A targeting could be an intriguing new therapeutic approach for the management of proliferative lupus nephritis in SLE patients.


Subject(s)
Immunity, Cellular/physiology , Interleukin-17/physiology , Lupus Nephritis/immunology , Lupus Nephritis/physiopathology , Th17 Cells/physiology , Animals , Antibodies, Anti-Idiotypic/pharmacology , CD3 Complex/metabolism , Disease Models, Animal , Female , Immunity, Cellular/immunology , Interferon-gamma/antagonists & inhibitors , Interferon-gamma/immunology , Interferon-gamma/physiology , Interleukin-17/antagonists & inhibitors , Interleukin-17/immunology , Lupus Nephritis/pathology , Male , Mice , Mice, Inbred MRL lpr , Mice, Inbred NZB , Mice, Knockout , Severity of Illness Index , T-Lymphocytes/pathology , T-Lymphocytes/physiology , Th17 Cells/pathology
8.
J Am Soc Nephrol ; 26(1): 55-66, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24904089

ABSTRACT

Neutrophil trafficking to sites of inflammation is essential for the defense against bacterial and fungal infections, but also contributes to tissue damage in TH17-mediated autoimmunity. This process is regulated by chemokines, which often show an overlapping expression pattern and function in pathogen- and autoimmune-induced inflammatory reactions. Using a murine model of crescentic GN, we show that the pathogenic TH17/IL-17 immune response induces chemokine (C-X-C motif) ligand 5 (CXCL5) expression in kidney tubular cells, which recruits destructive neutrophils that contribute to renal tissue injury. By contrast, CXCL5 was dispensable for neutrophil recruitment and effective bacterial clearance in a murine model of acute bacterial pyelonephritis. In line with these findings, CXCL5 expression was highly upregulated in the kidneys of patients with ANCA-associated crescentic GN as opposed to patients with acute bacterial pyelonephritis. Our data therefore identify CXCL5 as a potential therapeutic target for the restriction of pathogenic neutrophil infiltration in TH17-mediated autoimmune diseases while leaving intact the neutrophil function in protective immunity against invading pathogens.


Subject(s)
Chemokine CXCL5/metabolism , Glomerulonephritis/pathology , Neutrophils/metabolism , Th17 Cells/cytology , Animals , Chemokine CXCL1/metabolism , Chemokines/metabolism , Disease Models, Animal , Epithelial Cells/cytology , Female , Glomerulonephritis/metabolism , Glomerulonephritis/microbiology , Inflammation , Interleukin-17/metabolism , Kidney/metabolism , Kidney Tubules/metabolism , Male , Mice , Mice, Knockout , Mice, Transgenic , Neutrophil Infiltration/immunology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...