Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Brain Mapp ; 45(4): e26625, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38433665

ABSTRACT

Estimated age from brain MRI data has emerged as a promising biomarker of neurological health. However, the absence of large, diverse, and clinically representative training datasets, along with the complexity of managing heterogeneous MRI data, presents significant barriers to the development of accurate and generalisable models appropriate for clinical use. Here, we present a deep learning framework trained on routine clinical data (N up to 18,890, age range 18-96 years). We trained five separate models for accurate brain age prediction (all with mean absolute error ≤4.0 years, R2 ≥ .86) across five different MRI sequences (T2 -weighted, T2 -FLAIR, T1 -weighted, diffusion-weighted, and gradient-recalled echo T2 *-weighted). Our trained models offer dual functionality. First, they have the potential to be directly employed on clinical data. Second, they can be used as foundation models for further refinement to accommodate a range of other MRI sequences (and therefore a range of clinical scenarios which employ such sequences). This adaptation process, enabled by transfer learning, proved effective in our study across a range of MRI sequences and scan orientations, including those which differed considerably from the original training datasets. Crucially, our findings suggest that this approach remains viable even with limited data availability (as low as N = 25 for fine-tuning), thus broadening the application of brain age estimation to more diverse clinical contexts and patient populations. By making these models publicly available, we aim to provide the scientific community with a versatile toolkit, promoting further research in brain age prediction and related areas.


Subject(s)
Brain , Mental Recall , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Child, Preschool , Brain/diagnostic imaging , Diffusion , Neuroimaging , Machine Learning
2.
Front Radiol ; 3: 1251825, 2023.
Article in English | MEDLINE | ID: mdl-38089643

ABSTRACT

Unlocking the vast potential of deep learning-based computer vision classification systems necessitates large data sets for model training. Natural Language Processing (NLP)-involving automation of dataset labelling-represents a potential avenue to achieve this. However, many aspects of NLP for dataset labelling remain unvalidated. Expert radiologists manually labelled over 5,000 MRI head reports in order to develop a deep learning-based neuroradiology NLP report classifier. Our results demonstrate that binary labels (normal vs. abnormal) showed high rates of accuracy, even when only two MRI sequences (T2-weighted and those based on diffusion weighted imaging) were employed as opposed to all sequences in an examination. Meanwhile, the accuracy of more specific labelling for multiple disease categories was variable and dependent on the category. Finally, resultant model performance was shown to be dependent on the expertise of the original labeller, with worse performance seen with non-expert vs. expert labellers.

4.
Med Image Anal ; 78: 102391, 2022 05.
Article in English | MEDLINE | ID: mdl-35183876

ABSTRACT

The growing demand for head magnetic resonance imaging (MRI) examinations, along with a global shortage of radiologists, has led to an increase in the time taken to report head MRI scans in recent years. For many neurological conditions, this delay can result in poorer patient outcomes and inflated healthcare costs. Potentially, computer vision models could help reduce reporting times for abnormal examinations by flagging abnormalities at the time of imaging, allowing radiology departments to prioritise limited resources into reporting these scans first. To date, however, the difficulty of obtaining large, clinically-representative labelled datasets has been a bottleneck to model development. In this work, we present a deep learning framework, based on convolutional neural networks, for detecting clinically-relevant abnormalities in minimally processed, hospital-grade axial T2-weighted and axial diffusion-weighted head MRI scans. The models were trained at scale using a Transformer-based neuroradiology report classifier to generate a labelled dataset of 70,206 examinations from two large UK hospital networks, and demonstrate fast (< 5 s), accurate (area under the receiver operating characteristic curve (AUC) > 0.9), and interpretable classification, with good generalisability between hospitals (ΔAUC ≤ 0.02). Through a simulation study we show that our best model would reduce the mean reporting time for abnormal examinations from 28 days to 14 days and from 9 days to 5 days at the two hospital networks, demonstrating feasibility for use in a clinical triage environment.


Subject(s)
Deep Learning , Diffusion Magnetic Resonance Imaging , Hospitals , Humans , Magnetic Resonance Imaging/methods , Triage/methods
5.
Neuroimage ; 249: 118871, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34995797

ABSTRACT

Convolutional neural networks (CNN) can accurately predict chronological age in healthy individuals from structural MRI brain scans. Potentially, these models could be applied during routine clinical examinations to detect deviations from healthy ageing, including early-stage neurodegeneration. This could have important implications for patient care, drug development, and optimising MRI data collection. However, existing brain-age models are typically optimised for scans which are not part of routine examinations (e.g., volumetric T1-weighted scans), generalise poorly (e.g., to data from different scanner vendors and hospitals etc.), or rely on computationally expensive pre-processing steps which limit real-time clinical utility. Here, we sought to develop a brain-age framework suitable for use during routine clinical head MRI examinations. Using a deep learning-based neuroradiology report classifier, we generated a dataset of 23,302 'radiologically normal for age' head MRI examinations from two large UK hospitals for model training and testing (age range = 18-95 years), and demonstrate fast (< 5 s), accurate (mean absolute error [MAE] < 4 years) age prediction from clinical-grade, minimally processed axial T2-weighted and axial diffusion-weighted scans, with generalisability between hospitals and scanner vendors (Δ MAE < 1 year). The clinical relevance of these brain-age predictions was tested using 228 patients whose MRIs were reported independently by neuroradiologists as showing atrophy 'excessive for age'. These patients had systematically higher brain-predicted age than chronological age (mean predicted age difference = +5.89 years, 'radiologically normal for age' mean predicted age difference = +0.05 years, p < 0.0001). Our brain-age framework demonstrates feasibility for use as a screening tool during routine hospital examinations to automatically detect older-appearing brains in real-time, with relevance for clinical decision-making and optimising patient pathways.


Subject(s)
Aging , Brain/diagnostic imaging , Human Development , Magnetic Resonance Imaging , Neuroimaging , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Aging/pathology , Aging/physiology , Deep Learning , Human Development/physiology , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/standards , Middle Aged , Neuroimaging/methods , Neuroimaging/standards , Young Adult
6.
Eur Radiol ; 32(1): 725-736, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34286375

ABSTRACT

OBJECTIVES: The purpose of this study was to build a deep learning model to derive labels from neuroradiology reports and assign these to the corresponding examinations, overcoming a bottleneck to computer vision model development. METHODS: Reference-standard labels were generated by a team of neuroradiologists for model training and evaluation. Three thousand examinations were labelled for the presence or absence of any abnormality by manually scrutinising the corresponding radiology reports ('reference-standard report labels'); a subset of these examinations (n = 250) were assigned 'reference-standard image labels' by interrogating the actual images. Separately, 2000 reports were labelled for the presence or absence of 7 specialised categories of abnormality (acute stroke, mass, atrophy, vascular abnormality, small vessel disease, white matter inflammation, encephalomalacia), with a subset of these examinations (n = 700) also assigned reference-standard image labels. A deep learning model was trained using labelled reports and validated in two ways: comparing predicted labels to (i) reference-standard report labels and (ii) reference-standard image labels. The area under the receiver operating characteristic curve (AUC-ROC) was used to quantify model performance. Accuracy, sensitivity, specificity, and F1 score were also calculated. RESULTS: Accurate classification (AUC-ROC > 0.95) was achieved for all categories when tested against reference-standard report labels. A drop in performance (ΔAUC-ROC > 0.02) was seen for three categories (atrophy, encephalomalacia, vascular) when tested against reference-standard image labels, highlighting discrepancies in the original reports. Once trained, the model assigned labels to 121,556 examinations in under 30 min. CONCLUSIONS: Our model accurately classifies head MRI examinations, enabling automated dataset labelling for downstream computer vision applications. KEY POINTS: • Deep learning is poised to revolutionise image recognition tasks in radiology; however, a barrier to clinical adoption is the difficulty of obtaining large labelled datasets for model training. • We demonstrate a deep learning model which can derive labels from neuroradiology reports and assign these to the corresponding examinations at scale, facilitating the development of downstream computer vision models. • We rigorously tested our model by comparing labels predicted on the basis of neuroradiology reports with two sets of reference-standard labels: (1) labels derived by manually scrutinising each radiology report and (2) labels derived by interrogating the actual images.


Subject(s)
Deep Learning , Area Under Curve , Humans , Magnetic Resonance Imaging , Radiography , Radiologists
7.
Eur J Paediatr Neurol ; 34: 33-42, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34388649

ABSTRACT

Our aim is to elaborate the clinical significance of giant amplitude pattern reversal visual evoked potentials (VEPs) in children. 'Giant' amplitude VEPs exceed the upper 97.5th centile, 90% CI for age. We scrutinised 2750 pattern VEPs recorded to international standards between Jan 2015 and 2017 from children aged 16 years and under, attending a specialist children's hospital. Twenty seven children, median age 6yrs, (range 1-16 yrs), were identified with giant VEPs (P100 amplitude range 65-163 µV). Most, 22/27 (81%), had conditions associated with a risk of raised ICP. Sixteen of these twenty two children had craniosynostosis; six multi-sutural and eight single suture disease. Others had Idiopathic Intracranial Hypertension, arachnoid cyst, NF1 with shunted hydrocephalus, chronic infantile neurological cutaneous and articular (CINCA) syndrome, nephrotic cystinosis and obstructive sleep apnoea. Five children presented with a range of conditions, some associated with seizures some symptomatic, but as yet undiagnosed. Frequent structural associations were optical coherence tomography measures of optic disc maximum anterior axial horizontal retinal thickness projection >160 µm and neuro-radiological findings of CSF effacement and copper beaten appearance. Ultrasonography measures of optic nerve sheath diameters varied, but in one child took 2 years to resolve after treatment for raised ICP. Optic disc gradings by fundoscopy were mostly normal, as were visual acuities. Raised ICP was confirmed by gold standard ICP bolt measurements in five of seven children tested. These data suggest that rICP should be considered if a child has sustained giant amplitude VEPs at normal latency.


Subject(s)
Hydrocephalus , Optic Disk , Pseudotumor Cerebri , Adolescent , Child , Child, Preschool , Evoked Potentials, Visual , Humans , Infant , Visual Acuity
8.
Med Image Anal ; 67: 101862, 2021 01.
Article in English | MEDLINE | ID: mdl-33129151

ABSTRACT

Brain tissue segmentation from multimodal MRI is a key building block of many neuroimaging analysis pipelines. Established tissue segmentation approaches have, however, not been developed to cope with large anatomical changes resulting from pathology, such as white matter lesions or tumours, and often fail in these cases. In the meantime, with the advent of deep neural networks (DNNs), segmentation of brain lesions has matured significantly. However, few existing approaches allow for the joint segmentation of normal tissue and brain lesions. Developing a DNN for such a joint task is currently hampered by the fact that annotated datasets typically address only one specific task and rely on task-specific imaging protocols including a task-specific set of imaging modalities. In this work, we propose a novel approach to build a joint tissue and lesion segmentation model from aggregated task-specific hetero-modal domain-shifted and partially-annotated datasets. Starting from a variational formulation of the joint problem, we show how the expected risk can be decomposed and optimised empirically. We exploit an upper bound of the risk to deal with heterogeneous imaging modalities across datasets. To deal with potential domain shift, we integrated and tested three conventional techniques based on data augmentation, adversarial learning and pseudo-healthy generation. For each individual task, our joint approach reaches comparable performance to task-specific and fully-supervised models. The proposed framework is assessed on two different types of brain lesions: White matter lesions and gliomas. In the latter case, lacking a joint ground-truth for quantitative assessment purposes, we propose and use a novel clinically-relevant qualitative assessment methodology.


Subject(s)
Magnetic Resonance Imaging , Neuroimaging , Brain/diagnostic imaging , Humans , Learning , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...