Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; 71(8): 2300-2310, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38748530

ABSTRACT

OBJECTIVE: The key characteristics of light propagation are the average penetration depth, average maximum penetration depth, average maximum lateral spread, and average path length of photons. These parameters depend on tissue optical properties and, thus, on the pathological state of the tissue. Hence, they could provide diagnostic information on tissue integrity. This study investigates these parameters for articular cartilage which has a complex structure. METHODS: We utilize Monte Carlo simulation to simulate photon trajectories in articular cartilage and estimate the average values of the light propagation parameters (penetration depth, maximum penetration depth, maximum lateral spread, and path length) in the spectral band of 400-1400 nm based on the optical properties of articular cartilage zonal layers and bulk tissue. RESULTS: Our findings suggest that photons in the visible band probe a localized small volume of articular cartilage superficial and middle zones, while those in the NIR band penetrate deeper into the tissue and have larger lateral spread. In addition, we demonstrate that a simple model of articular cartilage tissue, based on the optical properties of the bulk tissue, is capable to provide an accurate description of the light-tissue interaction in articular cartilage. CONCLUSION: The results indicate that as the photons in the spectral band of 400-1400 nm can reach the full depth of articular cartilage matrix, they can provide viable information on its pathological state. Therefore, diffuse optical spectroscopy holds significant importance for objectively assessing articular cartilage health. SIGNIFICANCE: In this study, for the first time, we estimate the light propagation parameters in articular cartilage.


Subject(s)
Cartilage, Articular , Monte Carlo Method , Photons , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/chemistry , Cartilage, Articular/physiology , Computer Simulation , Humans , Models, Biological , Scattering, Radiation , Light
2.
J Biomed Opt ; 28(12): 125003, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38094709

ABSTRACT

Significance: Articular cartilage exhibits a zonal architecture, comprising three distinct zones: superficial, middle, and deep. Collagen fibers, being the main solid constituent of articular cartilage, exhibit unique angular and size distribution in articular cartilage zones. There is a gap in knowledge on how the unique properties of collagen fibers across articular cartilage zones affect the scattering properties of the tissue. Aim: This study hypothesizes that the structural properties of articular cartilage zones affect its scattering parameters. We provide scattering coefficient and scattering anisotropy factor of articular cartilage zones in the spectral band of 400 to 1400 nm. We enumerate the differences and similarities of the scattering properties of articular cartilage zones and provide reasoning for these observations. Approach: We utilized collimated transmittance and integrating sphere measurements to estimate the scattering coefficients of bovine articular cartilage zones and bulk tissue. We used the relationship between the scattering coefficients to estimate the scattering anisotropy factor. Polarized light microscopy was applied to estimate the depth-wise angular distribution of collagen fibers in bovine articular cartilage. Results: We report that the Rayleigh scatterers contribution to the scattering coefficients, the intensity of the light scattered by the Rayleigh and Mie scatterers, and the angular distribution of collagen fibers across tissue depth are the key parameters that affect the scattering properties of articular cartilage zones and bulk tissue. Our results indicate that in the short visible region, the superficial and middle zones of articular cartilage affect the scattering properties of the tissue, whereas in the far visible and near-infrared regions, the articular cartilage deep zone determines articular cartilage scattering properties. Conclusion: This study provides scattering properties of articular cartilage zones. Such findings support future research to utilize optical simulation to estimate the penetration depth, depth-origin, and pathlength of light in articular cartilage for optical diagnosis of the tissue.


Subject(s)
Cartilage, Articular , Collagen , Animals , Cattle , Collagen/chemistry , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/chemistry , Extracellular Matrix/chemistry , Microscopy, Polarization , Anisotropy
3.
Biomed Opt Express ; 14(7): 3397-3412, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37497494

ABSTRACT

There is increasing research on the potential application of diffuse optical spectroscopy and hyperspectral imaging for characterizing the health of the connective tissues, such as articular cartilage, during joint surgery. These optical techniques facilitate the rapid and objective diagnostic assessment of the tissue, thus providing unprecedented information toward optimal treatment strategy. Adaption of optical techniques for diagnostic assessment of musculoskeletal disorders, including osteoarthritis, requires precise determination of the optical properties of connective tissues such as articular cartilage. As every indirect method of tissue optical properties estimation consists of a measurement step followed by a computational analysis step, there are parameters associated with these steps that could influence the estimated values of the optical properties. In this study, we report the absorption and reduced scattering coefficients of articular cartilage in the spectral band of 400-1400 nm. We assess the impact of the experimental setup parameters, including surrounding medium, sample volume, and scattering anisotropy factor on the reported optical properties. Our results suggest that the absorption coefficient of articular cartilage is sensitive to the variation in the surrounding medium, whereas its reduced scattering coefficient is invariant to the experimental setup parameters.

4.
Biomed Opt Express ; 12(10): 6066-6080, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34745722

ABSTRACT

Optical properties of biological tissues in the NIR spectral range have demonstrated significant potential for in vivo diagnostic applications and are critical parameters for modelling light interaction in biological tissues. This study aims to investigate the optical properties of articular cartilage as a function of tissue depth and integrity. The results suggest consistent wavelength-dependent variation in optical properties between cartilage depth-wise zones, as well as between healthy and degenerated tissue. Also, statistically significant differences (p<0.05) in both optical properties were observed between the different cartilage depth-wise zones and as a result of tissue degeneration. When taken into account, the outcome of this study could enable accurate modelling of light interaction in cartilage matrix and could provide useful diagnostic information on cartilage integrity.

5.
Biomed Opt Express ; 11(11): 6480-6494, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33282503

ABSTRACT

Absorption and reduced scattering coefficients ( µ a , µ s ' ) of biological tissues have shown significant potential in biomedical applications. Thus, they are effective parameters for the characterization of tissue integrity and provide vital information on the health of biological tissues. This study investigates the potential of optical properties ( µ a , µ s ' ) for estimating articular cartilage composition and biomechanical properties using multivariate and machine learning techniques. The results suggest that µa could optimally estimate cartilage proteoglycan content in the superficial zone, in addition to its equilibrium modulus. While µ s ' could effectively estimate the proteoglycan content of the middle and deep zones in addition to the instantaneous and dynamic moduli of articular cartilage.

SELECTION OF CITATIONS
SEARCH DETAIL
...