Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Respir Crit Care Med ; 160(6): 1934-42, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10588609

ABSTRACT

We have proposed that exposure of epithelial cell membrane lipids in the lung (mainly phospholipids) to ozone will generate lipid ozonation products (LOP), which could be responsible for the proinflammatory effects of ozone. The ozonation of phosphocholine, the principal membrane phospholipid, produces a limited number of LOP, including hydroxyhydroperoxides and aldehydes. We now report that exposure of cultured human bronchial epithelial cells to the ozonized 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) product, 1-palmitoyl-2-(9-oxononanoyl)-sn-glycero-3-phosphocholine (PC-ALD), a phospholipase A(2) (PLA(2))-stimulatory LOP, resulted in a 113 +/- 11% increase in the amounts of tritiated platelet-activating factor ((3)H-PAF) released apically. (3)H-PAF release was also induced by 1-hydroxy-1-hydroperoxynonane of ozonized POPC (HHP-C9), a phospholipase C (PLC)- stimulatory LOP (134 +/- 40% increase in (3)H-PAF). PC-ALD at 10 microM, but not HHP-C9, induced a 127 +/- 24% increase in prostaglandin E(2) (PGE(2)) release (n = 6, p < 0.05). In contrast, HHP-C9, but not PC-ALD, induced interleukin (IL)-6 release (178 +/- 23% increase, n = 6, p < 0.05) and IL-8 release (101 +/- 23% increase, n = 8, p < 0. 05). These results suggest that LOP-dependent release of proinflammatory mediators may play an important role in the early inflammatory response seen during exposure to ozone.


Subject(s)
Alkanes/toxicity , Bronchi/metabolism , Epithelial Cells/metabolism , Inflammation Mediators/metabolism , Membrane Lipids/metabolism , Oxidants, Photochemical/toxicity , Ozone/toxicity , Peroxides/toxicity , Phosphatidylcholines/toxicity , Bronchi/cytology , Cells, Cultured , Dinoprostone/biosynthesis , Enzyme Activation , Humans , Interleukin-6/biosynthesis , Interleukin-8/biosynthesis , Phospholipases A/metabolism , Platelet Activating Factor/biosynthesis , Type C Phospholipases/metabolism
2.
Toxicol Appl Pharmacol ; 150(2): 338-49, 1998 Jun.
Article in English | MEDLINE | ID: mdl-9653065

ABSTRACT

Ozone exposure, in vitro, has been shown to activate phospholipases A2 (PLA2), C (PLC), and D (PLD) in airway epithelial cells. However, because of its high reactivity, ozone cannot penetrate far into the air/lung tissue interface. It has been proposed that ozone reacts with unsaturated fatty acids (UFA) in the epithelial lining fluid (ELF) and cell membranes to generate a cascade of lipid ozonation products (LOP) that mediate ozone-induced toxicity. To test this hypothesis, we exposed cultured human bronchial epithelial cells (BEAS-2B) to LOP (1-100 microM) produced from the ozonation of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) and measured the activity of PLA2, PLC, and PLD. The PLA2 isoform responsible for arachidonic acid release (AA) in stimulated cultures was also characterized. Activation of PLA2, PLC, and PLD by three oxidants, hydrogen peroxide (H2O2), tert-butyl hydroperoxide (t-BOOH) and 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH) also was measured and compared to that of LOP. The derivatives of ozonized POPC at the sn-2 residue, 9-oxononanoyl (PC-ALD), 9-hydroxy-9-hydroperoxynonanoyl (PC-HHP), and 8-(-5-octyl-1,2,4-trioxolan-3-yl-) octanoyl (POPC-OZ) selectively activated PLA2 in a dose-dependent fashion. Cytosolic PLA2 (cPLA2) measured in the cytosolic fraction of stimulated cell lysates was found to be the predominant isoform responsible for AA release. PLC activation was exclusively induced by the hydroxyhydroperoxide derivatives. PC-HHP and the 9-carbon hydroxyhydroperoxide (HHP-C9) increased PLC activity. PLD activity also was induced by LOP generated from POPC. Incubation of cultures with H2O2 alone did not stimulate PLC; however, in the presence of the aldehyde, nonanal, a 62 +/- 2% increase in PLC activity was found, suggesting that the increase in activity was due to the formation of the intermediate HHP-C9. t-BOOH, and AAPH also failed to induce PLA2 activation, but did activate PLC, under conditions of exposure identical to that of LOP. Only t-BOOH activated PLD. These results suggest that biologically relevant concentrations of LOP activate PLA2, PLC, and PLD in the airway epithelial cell, a primary target to ozone exposure. The activation of these phospholipases may play a role in the development of lung inflammation during ozone exposure.


Subject(s)
Bronchi/enzymology , Isoenzymes/metabolism , Lipids/chemistry , Oxidants, Photochemical/toxicity , Ozone/toxicity , Phospholipase D/metabolism , Phospholipases A/metabolism , Type C Phospholipases/metabolism , Arachidonic Acid/metabolism , Bronchi/drug effects , Cell Line , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Epithelial Cells/drug effects , Epithelial Cells/enzymology , Humans , Oxidants, Photochemical/chemistry , Ozone/chemistry , Phosphatidylcholines/chemistry , Phospholipases A2 , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...