Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 7(41): 22962-9, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26434978

ABSTRACT

Molecular insights into porphyrin adsorption on nanostructured metal oxide surfaces and associated ion exchange reactions are key to the development of functional hybrids for energy conversion, sensing, and light emission devices. Here we investigated the adsorption of tetraphenyl-porphyrin (2HTPP) from toluene solution on two types of MgO powder. We compare MgO nanocubes with an average size d < 10 nm and MgO cubes with 10 nm ≤ d ≤ 1000 nm. Using molecular spectroscopy techniques such as UV/vis transmission and diffuse reflectance (DR), photoluminescence (PL), and diffuse reflectance infrared Fourier-transform (DRIFT) spectroscopy in combination with structural characterization techniques (powder X-ray diffraction and transmission electron microscopy, TEM), we identified a new room temperature metalation reaction that converts 2HTPP into magnesium tetraphenyl-porphyrin (MgTPP). Mg(2+) uptake from the MgO nanocube surfaces and the concomitant protonation of the oxide surface level off at a concentration that corresponds to roughly one monolayer equivalent adsorbed on the MgO nanocubes. Larger MgO cubes, in contrast, show suppressed exchange, and only traces of MgTPP can be detected by photoluminescence.

2.
ChemSusChem ; 7(9): 2516-26, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25124120

ABSTRACT

We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the "solid catalyst with ionic liquid layer" (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass%.


Subject(s)
Aluminum Oxide/chemistry , Methanol/chemistry , Platinum/chemistry , Salts/chemistry , Steam , Carbon Monoxide/chemistry , Carbonates/chemistry , Catalysis , Hydroxides/chemistry , Kinetics , Potassium/chemistry , Potassium Compounds/chemistry , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...