Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 106(3-2): 035203, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36266795

ABSTRACT

Electron-beam plasma interaction has long been a topic of great interest. Despite the success of the quasilinear and weak turbulence theories, their validities are limited by the requirements of a sufficiently dense mode spectrum and a small wave amplitude. In this paper, we extensively study the collective processes of a mono-energetic electron beam emitted from a thermionic cathode propagating through a cold plasma by performing high-resolution two-dimensional particle-in-cell simulations and using analytical theories. We confirm that, during the initial stage of two-stream instability between the beam and background cold electrons, it is saturated due to the well-known wave-trapping mechanism. Further evolution occurs due to strong wave-wave nonlinear processes. We show that the beam-plasma interaction can be classified into four different physical regimes in the parameter space for the plasma and beam parameters. The differences between the regimes are analyzed in detail. We identify a new regime in the strong Langmuir turbulence featured by what we call electron modulational instability (EMI) that could create a local Langmuir wave packet growing faster than the ion plasma frequency. Ions do not have time to respond to EMI in the initial growing stage. On a longer timescale, the action of the ponderomotive force produces very strong ion density perturbations, and eventually, the beam-plasma wave interaction stops being resonant due to the strong ion density perturbations. Consequently, in this EMI regime, electron beam-plasma interaction occurs in a repetitive (intermittent) process. The beam electrons are strongly scattered by waves, and the Langmuir wave spectrum is significantly broadened, which in turn gives rise to strong heating of bulk electrons. Associated energy transfer from the beam to the background plasma electrons has been studied. A resulting kappa (κ) distribution and a wave-energy spectrum E^{2}(k)∼k^{-5} are observed in the strong turbulent regime.

2.
Phys Rev Lett ; 129(12): 125001, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36179180

ABSTRACT

We study collective processes for an electron beam propagating through a background plasma using simulations and analytical theory. A new regime where the instability of a Langmuir wave packet can grow locally much faster than ion frequency is clearly identified. The key feature of this new regime is an electron modulational instability that rapidly creates a local Langmuir wave packet, which in its turn produces local charge separation and strong ion density perturbations because of the action of the ponderomotive force, such that the beam-plasma wave interaction stops being resonant. Three evolution stages of the process and observed periodic burst features are discussed. Different physical regimes in the plasma and beam parameter space are demonstrated for the first time.

3.
Phys Chem Chem Phys ; 21(24): 13268-13286, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31183487

ABSTRACT

High-yield production of high-quality boron-nitride nanotubes (BNNTs) has been reported recently in several publications. A boron-rich material is evaporated using a laser or plasma in a nitrogen-rich atmosphere to supply precursor gaseous species for nucleation and growth of BNNTs. Either hydrogen was added or pressure was increased in the system to achieve high yield and high purity of the synthesized nanotubes. According to the widely-accepted "root grow" mechanism, upon gas cooling, boron droplets form first, then they adsorb nitrogen from the surrounding gas species, and BNNTs grow on their surfaces. However, what are the precursor species that provide nitrogen for the growth is still an open question. To answer this question, we performed thermodynamic calculations for determining the B-N mixture composition considering a broad set of gas species. For the first time, condensation of boron was taken into account and was shown to have a drastic effect on thegas chemical composition. B2N molecules were identified to be a major source of nitrogen for the growth of BNNTs. The presence of B2N molecules in a B-N gas mixture was verified by our spectroscopic measurements during laser ablation of boron-rich targets in nitrogen. It was shown that the increase of pressure has a quantitative effect on the mixture composition yielding an increase of the precursor density. Hydrogen addition might open an additional channel of nitrogen supply to support the growth of BNNTs. The nitrogen atoms react with abundant H2 molecules to form NH2 and then NH3 precursor species, instead of just recombining back to inert N2 molecules, as in the no-hydrogen case. In addition, thermodynamics was applied in conjunction with agglomeration theory to predict the size of the boron droplets upon growth of BNNTs. Analytical relations for the identification of crucial species densities were derived.

4.
Phys Rev Lett ; 103(7): 075003, 2009 Aug 14.
Article in English | MEDLINE | ID: mdl-19792651

ABSTRACT

It is shown that the application of a weak solenoidal magnetic field along the direction of ion beam propagation through a neutralizing background plasma can significantly enhance the beam self-focusing for the case where the beam radius is small compared to the collisionless electron skin depth. The enhanced focusing is provided by a strong radial self-electric field that is generated due to a local polarization of the magnetized plasma background by the moving ion beam. A positive charge of the ion beam pulse becomes overcompensated by the plasma electrons, which results in the radial focusing of the beam ions. The expression for the self-focusing force is derived analytically and compared with the results of numerical simulations.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(2 Pt 2): 026411, 2003 Aug.
Article in English | MEDLINE | ID: mdl-14525124

ABSTRACT

In low-pressure discharges, where the electron mean free path is larger or comparable with the discharge length, the electron dynamics is essentially nonlocal. Moreover, the electron energy distribution function (EEDF) deviates considerably from a Maxwellian. Therefore, an accurate kinetic description of the low-pressure discharges requires knowledge of the nonlocal conductivity operator and calculation of the non-Maxwellian EEDF. The previous treatments made use of simplifying assumptions: a uniform density profile and a Maxwellian EEDF. In the present study, a self-consistent system of equations for the kinetic description of nonlocal, nonuniform, nearly collisionless plasmas of low-pressure discharges is derived. It consists of the nonlocal conductivity operator and the averaged kinetic equation for calculation of the non-Maxwellian EEDF. The importance of accounting for the nonuniform plasma density profile on both the current density profile and the EEDF is demonstrated.

6.
Phys Rev Lett ; 89(26): 265006, 2002 Dec 23.
Article in English | MEDLINE | ID: mdl-12484832

ABSTRACT

A novel nonlinear effect of anomalously deep penetration of an external radio-frequency electric field into a plasma is described. A self-consistent kinetic treatment reveals a transition region between the sheath and the plasma. Because of the electron velocity modulation in the sheath, bunches in the energetic electron density are formed in the transition region adjacent to the sheath. The width of the region is of order V(T)/omega, where V(T) is the electron thermal velocity, and omega is the frequency of the electric field. The presence of the electric field in the transition region results in a collisionless cooling of the energetic electrons and an additional heating of the cold electrons.

SELECTION OF CITATIONS
SEARCH DETAIL
...