Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr Sci Vitaminol (Tokyo) ; 49(3): 187-94, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12953797

ABSTRACT

Platelet-derived growth factor (PDGF) plays an important role in the pathogenic course of atherosclerosis, pulmonary fibrosis, and glomerulonephritis, and increased activity of the PDGF signaling pathway has been implicated as a contributing factor in the progression of the diseases. Taurine may be a prophylactic amino acid for atherosclerosis not only by decreasing plasma cholesterol level, but also by inhibiting the cell proliferation-signaling pathway. To elucidate how taurine affects the signaling pathway, we investigated the effect of taurine on the expression of immediate-early genes and activation of mitogen-activated protein kinases (MAPKs) in NIH/3T3 cells as standard mesenchymal cells. Taurine inhibited PDGF-BB-induced c-fos and c-jun mRNA expressions dose-dependently, although structural analogues of taurine did not. Taurine decreased the PDGF-induced p44/p42 ERK (extracellular signal-regulated kinase) phosphorylation state dose-dependently, although no phosphorylation was observed on JNK/SAPK (c-Jun N-terminal kinase/stress-activated protein kinase) and p38 MAPK. Further, PDGF-BB-induced tyrosine phosphorylation of the PDGF-beta receptor was not influenced by treatment with taurine, indicating that taurine never affects ligand-receptor interaction, and may act downstream of the PDGF receptor. Thus, the inhibitory mechanism of taurine on PDGF-induced c-fos and c-jun mRNA expressions may depend on the p44/p42 ERK pathway, but not on PDGF-beta receptor tyrosine phosphorylation, JNK/SAPK or p38 MAPK pathway. These results suggest that taurine may suppress the cell proliferation-signaling pathway through the inhibition of ERK activity and immediate-early gene expression.


Subject(s)
Gene Expression Regulation, Enzymologic/drug effects , Mitogen-Activated Protein Kinases/metabolism , Platelet-Derived Growth Factor/metabolism , Signal Transduction/drug effects , Taurine/pharmacology , Animals , Becaplermin , Dose-Response Relationship, Drug , Humans , Mice , NIH 3T3 Cells , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-jun/genetics , Proto-Oncogene Proteins c-jun/metabolism , Proto-Oncogene Proteins c-sis , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...