Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(6): eadf8119, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36753551

ABSTRACT

Terrestrial amplification (TA) of land warming relative to oceans is apparent in recent climatic observations. TA results from land-sea coupling of moisture and heat and is therefore important for predicting future warming and water availability. However, the theoretical basis for TA has never been tested outside the short instrumental period, and the spatial pattern and amplitude of TA remain uncertain. Here, we investigate TA during the Last Glacial Maximum (LGM; ~20 thousand years) in the low latitudes, where the theory is most applicable. We find remarkable consistency between paleotemperature proxies, theory, and climate model simulations of both LGM and future climates. Paleoclimate data thus provide crucial new support for TA, refining the range of future low-latitude, low-elevation TA to [Formula: see text] (95% confidence interval), i.e., land warming ~40% more than oceans. The observed data model theory agreement helps reconcile LGM marine and terrestrial paleotemperature proxies, with implications for equilibrium climate sensitivity.

2.
Nat Commun ; 13(1): 1306, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35288559

ABSTRACT

Despite tectonic conditions and atmospheric CO2 levels (pCO2) similar to those of present-day, geological reconstructions from the mid-Pliocene (3.3-3.0 Ma) document high lake levels in the Sahel and mesic conditions in subtropical Eurasia, suggesting drastic reorganizations of subtropical terrestrial hydroclimate during this interval. Here, using a compilation of proxy data and multi-model paleoclimate simulations, we show that the mid-Pliocene hydroclimate state is not driven by direct CO2 radiative forcing but by a loss of northern high-latitude ice sheets and continental greening. These ice sheet and vegetation changes are long-term Earth system feedbacks to elevated pCO2. Further, the moist conditions in the Sahel and subtropical Eurasia during the mid-Pliocene are a product of enhanced tropospheric humidity and a stationary wave response to the surface warming pattern, which varies strongly with land cover changes. These findings highlight the potential for amplified terrestrial hydroclimate responses over long timescales to a sustained CO2 forcing.


Subject(s)
Earth, Planet , Ice Cover , Feedback
3.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article in English | MEDLINE | ID: mdl-34301875

ABSTRACT

Anthropogenic climate change is currently driving environmental transformation on a scale and at a pace that exceeds historical records. This represents an undeniably serious challenge to existing social, political, and economic systems. Humans have successfully faced similar challenges in the past, however. The archaeological record and Earth archives offer rare opportunities to observe the complex interaction between environmental and human systems under different climate regimes and at different spatial and temporal scales. The archaeology of climate change offers opportunities to identify the factors that promoted human resilience in the past and apply the knowledge gained to the present, contributing a much-needed, long-term perspective to climate research. One of the strengths of the archaeological record is the cultural diversity it encompasses, which offers alternatives to the solutions proposed from within the Western agro-industrial complex, which might not be viable cross-culturally. While contemporary climate discourse focuses on the importance of biodiversity, we highlight the importance of cultural diversity as a source of resilience.


Subject(s)
Anthropogenic Effects , Archaeology , Climate Change , Biodiversity , Cultural Diversity , Humans , Models, Theoretical , Time Factors
4.
Science ; 372(6546): 1097-1101, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34083489

ABSTRACT

Water-stable isotopes in polar ice cores are a widely used temperature proxy in paleoclimate reconstruction, yet calibration remains challenging in East Antarctica. Here, we reconstruct the magnitude and spatial pattern of Last Glacial Maximum surface cooling in Antarctica using borehole thermometry and firn properties in seven ice cores. West Antarctic sites cooled ~10°C relative to the preindustrial period. East Antarctic sites show a range from ~4° to ~7°C cooling, which is consistent with the results of global climate models when the effects of topographic changes indicated with ice core air-content data are included, but less than those indicated with the use of water-stable isotopes calibrated against modern spatial gradients. An altered Antarctic temperature inversion during the glacial reconciles our estimates with water-isotope observations.

5.
Sci Adv ; 5(11): eaax7047, 2019 11.
Article in English | MEDLINE | ID: mdl-31799394

ABSTRACT

The last extended time period when climate may have been warmer than today was during the Last Interglacial (LIG; ca. 129 to 120 thousand years ago). However, a global view of LIG precipitation is lacking. Here, seven new LIG climate models are compared to the first global database of proxies for LIG precipitation. In this way, models are assessed in their ability to capture important hydroclimatic processes during a different climate. The models can reproduce the proxy-based positive precipitation anomalies from the preindustrial period over much of the boreal continents. Over the Southern Hemisphere, proxy-model agreement is partial. In models, LIG boreal monsoons have 42% wider area than in the preindustrial and produce 55% more precipitation and 50% more extreme precipitation. Austral monsoons are weaker. The mechanisms behind these changes are consistent with stronger summer radiative forcing over boreal high latitudes and with the associated higher temperatures during the LIG.

6.
Science ; 363(6423): 177-181, 2019 01 11.
Article in English | MEDLINE | ID: mdl-30630932

ABSTRACT

Pollen records from African highlands are scarce; hence, the paleoecology of the Afromontane forest and its responses to glacial cycles are poorly known. Lake Bambili (Cameroon) provides a record of vegetation changes in the tropical mountains of Africa over the past 90,000 years, with high temporal resolution. Pollen data and biome reconstructions show a diverging response of forests to climate changes; the upper tree line was extremely unstable, shifting substantially in response to glacial-interglacial climate alternation, whereas the transition between the montane and lowland forests remained remarkably stable. Such ecological instability may have had a critical influence on species richness in the Afromontane forests.


Subject(s)
Climate Change , Ecosystem , Forests , Cameroon , Lakes , Paleontology , Pollen/classification , Trees/classification
7.
Philos Trans A Math Phys Eng Sci ; 373(2054)2015 Nov 13.
Article in English | MEDLINE | ID: mdl-26438281

ABSTRACT

Simulations of the climates of the Last Glacial Maximum (LGM), 21 000 years ago, and of the Mid-Holocene (MH), 6000 years ago, allow an analysis of climate feedbacks in climate states that are radically different from today. The analyses of cloud and surface albedo feedbacks show that the shortwave cloud feedback is a major driver of differences between model results. Similar behaviours appear when comparing the LGM and MH simulated changes, highlighting the fingerprint of model physics. Even though the different feedbacks show similarities between the different climate periods, the fact that their relative strength differs from one climate to the other prevents a direct comparison of past and future climate sensitivity. The land-surface feedback also shows large disparities among models even though they all produce positive sea-ice and snow feedbacks. Models have very different sensitivities when considering the vegetation feedback. This feedback has a regional pattern that differs significantly between models and depends on their level of complexity and model biases. Analyses of the MH climate in two versions of the IPSL model provide further indication on the possibilities to assess the role of model biases and model physics on simulated climate changes using past climates for which observations can be used to assess the model results.

8.
J Hum Evol ; 73: 35-46, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25034085

ABSTRACT

The Last Glacial Maximum (LGM) was a global climate event, which had significant repercussions for the spatial distribution and demographic history of prehistoric populations. In Eurasia, the LGM coincides with a potential bottleneck for modern humans and may mark the divergence date for Asian and European populations (Keinan et al., 2007). In this research, the impact of climate variability on human populations in the Iberian Peninsula during the Last Glacial Maximum (LGM) is examined with the aid of downscaled high-resolution (16 × 16 km) numerical climate experiments. Human sensitivity to short time-scale (inter-annual) climate variability during this key time period, which follows the initial modern human colonisation of Eurasia and the extinction of the Neanderthals, is tested using the spatial distribution of archaeological sites. Results indicate that anatomically modern human populations responded to small-scale spatial patterning in climate variability, specifically inter-annual variability in precipitation levels as measured by the standard precipitation index. Climate variability at less than millennial scale, therefore, is shown to be an important component of ecological risk, one that played a role in regulating the spatial behaviour of prehistoric human populations and consequently affected their social networks.


Subject(s)
Archaeology , Climate Change , Population Dynamics , Climate , Humans , Models, Theoretical , Portugal , Spain
9.
PLoS One ; 3(12): e3972, 2008.
Article in English | MEDLINE | ID: mdl-19107186

ABSTRACT

BACKGROUND: Despite a long history of investigation, considerable debate revolves around whether Neanderthals became extinct because of climate change or competition with anatomically modern humans (AMH). METHODOLOGY/PRINCIPAL FINDINGS: We apply a new methodology integrating archaeological and chronological data with high-resolution paleoclimatic simulations to define eco-cultural niches associated with Neanderthal and AMH adaptive systems during alternating cold and mild phases of Marine Isotope Stage 3. Our results indicate that Neanderthals and AMH exploited similar niches, and may have continued to do so in the absence of contact. CONCLUSIONS/SIGNIFICANCE: The southerly contraction of Neanderthal range in southwestern Europe during Greenland Interstadial 8 was not due to climate change or a change in adaptation, but rather concurrent AMH geographic expansion appears to have produced competition that led to Neanderthal extinction.


Subject(s)
Biological Evolution , Extinction, Biological , Hominidae/physiology , Adaptation, Biological/genetics , Adaptation, Biological/physiology , Animals , Archaeology , Climate , Ecosystem , Europe , Fossils , Hominidae/anatomy & histology , Humans , Models, Biological , Population Dynamics , Selection, Genetic , Social Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...